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Introduction

Distributed computer systems have a greater potential for decentralized physical
and administrative control than do more traditional centralized systems. It is felt that
organizations consisting of co-operating, largely autonomous groups can best be served
by computer systems consisting of collections of co-operating, autonomous nodes,
where each node is controlled by a particular group [Reed 78, Svobod 79]. When we
say that nodes arc autonomous, we mean that the group controlling a node has a
certain amount of freedom to choose its hardware configuration, and to run specialized
or proprietary software. Nodes may perform spccialized tasks, such as printing, or
high-precision floating point arithmetic, and may benefit from specialized hardware
configurations. Nodes owned by groups interested in special applications may be
required to run private software. Rich groups may maintain expensive, sophisticated

machines, while groups with smaller budgets may be limited to simpler devices.

Conflicting with the need for diversity and specialization is a nced for individual
nodes to co-operate and communicate. The existence of diversity in hardware,
software, and administrative policy threatens to complicate the task of designing and

verifying programs that involve the participation of several nodes.

A high-level programming language suitable for constructing distributed

oF
X
shiinidelnii

programs should support the specification of node behavior in a clear, verifiable,

eheass

implementation-independent manner.  Languages that support the use of data
abstraction, such as CLU [Liskov79), or Alphard [Wulf76] already present a
mcthodology for the construction of clean, modular interfaces between layers of a
centralized system. To support communication and co-operation in a heterogeneous

distributed system, it is desirable to impose interfaces with similar modularity qualities




between nodes.

This thesis develops. communication primitives for a high-level language
intended for writing distributed programs in a heterogeneous system. Communication
among nodes is accomplished by message-passing, so that the behavior of a node can
be completely characterized by the messages it sends and receives. Our primitives are
structured to facilitate the design of distributed programs in terms of the
message-passing behavior of participating nodes, independently of how the nodes

implement that behavior.

We assume that communicating programs use the primitives developed in this
thesis. Messages contain values such as integers, booleans, or values of user-defined
type. We shall see that it is a relatively simple matter to communicate values of
language-defined type; a node may send the integer value 1 to another node, even if
the two nodes do not implement integers in the same way. In this thesis we address the
more difficult problem of developing a well-structured language mechanism to

communicate values of user-defined type.
1.1 Model of Computation

Following {[Liskov 79a], the logical entities corresponding to individual
administrative groups are called guardians. The physical machines on which guardians
reside are called nodes. There is not necessarily a one-to-one correspondence between
guardians and nodes, although guardians are abstractions of individual computers. A
guardian has an address space containing objects and processes. A process is an

execution of a sequential program; objects are CLU objects.
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1.2 Model of Communication

With the exception of ports, to be discussed below, the address spaces of
guardians are disjoint; guardians only communicate by message passing. Messages do
not contain objects, they contain the values of objects. The result of sending a message
containing an object's value is to create a new, distinct copy of that object at the

destination guardian, having the same value as the original.
1.3 Language Primitives

The programming language used in this thesis is CLU [Liskov 79], with new
primitives and data types to facilitate distributed programming. For simplicity, we
ignore CLU's own variable facility, although we mention some of the issues it raises in

the conclusion.

Port objects permit general routing and sorting of messages. Messages are
addressed to ports, not guardians. Ports accept and store messages of pre-determined

type, and they are the only objects that can be named across guardian boundaries.

The language includes send and receive primitives for communicating values of
objects between guardians. Both send and receive specify a port. The send statement
causes a message to be sent to the indicated port, and the reccive statement causes a
message previously received at the indicated port to be interpreted. A port object is

created by a guardian, and only that guardian can process messages received by that

port.




1.4 Multiple Representations

The CLU language provides a number of built-in data types, and permits users to
define new types, which we call abstract types. Two kinds of information are useful for
describing an abstract type T. Specification information describes the behavior of T
objects in terms of a collection of primitive operations. Representation information
includes the data structures used to represent T objects, and the code for the
procedures implementing the primitive operations. Representation information is
encapsulated within a cluster. Clusters are information hiding devices; other programs
may use specification information about a type, but not representation information.
This restriction is enforced by limiting access to an object’s underlying representation

to the primitive operations of the type.

Differert guardians in the distributed system may implement the same abstract
type. We do not require that all the guardians implementing a given type use the same
representation. In fact, for many reasons it is desirable to allow different guardians to
use different representations for a common abstract type. The most compelling reason
is to realize the large degree of autonomy pé)ssible in a decentralized system. In a
system of physically and administratively independent guardians, individuals will
invariably be tempted to "customize” the implementations of common data types,
while retaining the need to communicate their values with other guardians. For
example, an individual may wish to install a privately developed hashing function in a

guardian’s implementation of a symbol table type.

Different patterns of use may encourage speccialized representations; for
example, a company’s sales division may wish to support a more space-consuming

representation of a telephone book, which, in addition to listing telephone numbers
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and addresses keyed by names, lists numbers and names keyed by addresses,

permitting more efficient canvassing of neighborhoods.

Hardware characteristics may also encourage specialized representations. A
guardian whose underlying hardware interpreter directly supports complex arithmetic
should treat complex numbers as a base-level type, and should not have to represent
complex numbers in the same way as a guardian residing at a less powerful node.
Similarly, guardians providing access to different kinds of photo-typesetting devices
may use different internal representations for character fonts, while guardians that use
those servers should use a single abstract fonr type, understood by all the servers,

regardless of the underlying hardware interpreter.

Security concerns may also prompt a guardian to keep secret its representation
for a type. The scheme developed in this thesis permits individual guardians to conceal
the representation used to implement a type from other guardians implementing that

same type.
1.5 Sharing

CLU objects may name other objects. When two objects name the same object,
we say the latter is shared. The behavior of an object may depend, not only on the
objects it contains, but also on sharing among them. The semantics of value
transmission for such a type should state whether this sharing structure is preserved.
Any scheme for transmitting values must address the problem of preserving (or not
preserving) the sharing structure of objects. The scheme presented in this thesis takes
the approach that the degree to which sharing is preserved is part of each type's

definition. The language provides the implementors of a type with the tools necessary
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to control the transmission of sharing structure.
1.6 Why Type-Independent Schemes Don’t Work

A straightforward and general scheme for transmitting an object’s value is simply
to transmit the value of the object's underlying representation in terms of values of
primitive type. Such a scheme clearly does not support multiple representations, Even
if it were acceptable to force cvery guardian to use the same representation for each
transmissible type, such a naive scheme would be completely unsuited for a language

based on the use of data abstraction, as we discuss in the next paragraphs.

The underlying representation of an object may be transmissible, while the
abstract value of that object may not be. For example, a file name may be represented
by a character string. The string may be transmissible, but the file name may be

meaningless outside of a particular file system belonging to a particular guardian,

Conversely, there are a number of situations where an object’s abstract value is
transmissible, but where the object’s representation is unsuited as a vehicle for

communicating its value. For instance:

An object’s representation may contain information meaningless
to another guardian, such as an index into a private table
maintained by the original guardian. A naive scheme could not
recognize (and compensate for) such context-dependent
information.,

An object's representation could include objects whose values
are not themscelves transmissible, (e.g. an 170 stream) but which
can be reconstructed by the recipient.
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What constitutes the "value” of an abstract object may not
always be clear from its representation. For example, each
object of a type might be marked with its time of creation.
When the value of such an object is transmitted, what creation
time should the new copy contain? Only the programmer can
make this decision.

A type's representation may contain redundant information that
may be more economically reconstructed than transmitted.

We conclude that transmissibility is a characteristic of an object's type, not of its

undcrlying representation.

1.7 Related Work

We begin by providing a rather summary description of our scheme to lay a basis
for comparison with previous work. We assume that the language implementations of
the various guardians are capable of communicating values of built-in type. To
communicate values of a user-defined type between guardians that may use different
representations for that type, values are encoded into a standard intermediate
representation, called the type's external representation. At the language level, this
external representation takes the form of an object of different transmissible type. The
external representation type may itself be user-defined, or contain user-defined types.
When a value is sent in a message, a series of translation operations are invoked that
eventually reduce the user-defined value to values of built-in type, which can be.
transmitted. Upon receipt, the inverse translations arc applied to reconstruct the

original value.

An alternative to standard intermediate represcntations is direct translation
between representations. [Fabry 76] develops a scheme for replacing modules while

the ambient system continues to run. During the transition from an old version to a

;
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new version it is possible that different representations for objects of the same type
may co-exist. In Fabry's scheme, each object is tagged with a version number, and
each module version includes a translation operation from the representation used by
the previous version to its own representation. Whenever an object using an old
representation is encountered, a chain of translation operations is invoked to convert

the object into the current representation for that type.

It does not appear that direct translation can be applied to the problem of value
transmission in a hetcrogeneous distributed system. Fabry's version numbering
scheme assumes that each new version makes a single predecessor obsolete, and thus it
suffices to provide a single translation operation. In a heterogeneous system where
each guardian may use a different representation, there is no such natural ordering
among representations. When a new implementation of an existing type is introduced,
how many translation operations must be provided? Must all other guardians be

informed? How do guardians translate between hardware-dependent representations?

A number of schemes have emerged that permit transmission of built-in values
between heterogencous nodes through the use of standard intermediate
representations  [Levine 78,Crocker 75,Postel 74, White 74,Neigus 73, Telnet 73].  Our
scheme builds on the results of these works, since we assume that the underlying
language implementation can faithfully transmit such language-defined values as

strings, or arrays of integers, independently of their machine-level representations.

[Levine 78] examincs and evaluates different strategics for communicating values
such as real numbers, integers, or files of characters among heterogeneous nodes. It is

concluded that the use of standard intermediate represcntations best satisfies such

criteria as flexibility, extensibility, and efficiency.
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A number of protocols have been developed for transmission of typed
information across the ARPANET.! The Procedure Call Protocol developed for the
National Software Works [Crocker 75,Postel 74,White 74] is the most ambitious, being
capable of transmitting such values as character strings, integers, and lists. The
TELNET protocol [Telnet 73] is used for transferring character information, and the
File Transfer Protocol [Neigus 73] is used to transfer files. In these. protocols, the
sender converts the information to be sent into a standard representation which is
either statically determined, or agrecd upon by negotiation. Upon receipt, the rcceiver

converts the standard representation into whatever local representation it uses.

[Haber 78] discusses methods for dynamic replacement of modules managing
collections of long-lived objects. Each module version includes operations to translate
between its own representation and a "simple canonical” representation. When a new
module encounters an object in the old representation, the old module version is called
upon to translate the object into its canonical representation, and the new version
translates the canonical representation into the current representation. It is remarked
that canonical representations may be used to communicate values among

heterogeneous nodes in a distributed system.

Our scheme differs from that described in [Haber 78] in that we explicitly state
what constitutes a permissible external (canonical) representation. As we shall explain
in detail in the next chapter, many of the modularity properties of our scheme are a

direct result of the particular way external representations are defined.

1. By "typed” information, we mean as other than uninterpreted bit strings.

P e e e L
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The PLITS language [Feldman 79] defines a number of language primitives for
writing distributed programs. PLITS modules communicate by message-passing.
Messages consist of individual values of unstructured primitive type.1 The
mechanisms used to communicate these values between heterogeneous nodes are not
described. Users of the language who wish to transmit more complicated values such

as arrays, or values of user-defined type, are left to their own devices.

When defining value transmission for a type, one must decide what constitutes
the "boundary” of an object, and what effect transmission is to have on an object’s
sharing structure. A related problem, that of defining copying operations for objects in
a distributed system is addressed in [Sollins 79). The model of communication used in
this thesis is similar to the copy~full-local operation described there. Our approach
differs in that our primary interest is not in developing sophisticated copying
operations; rather it is in developing language constructs to permit users to define

*’ transmissible abstract types in ways that do not compromise guardian autonomy.

[Gligor 79] discusses techniques for storing values of objects on secondary
storage, using encryption to avoid compromising the security of the information. Their

1. encryption scheme is largely independent of the message construction scheme

developed in this thesis; it could be used to provide security and authentication to the

language primitives developed here,

o~

Both the choice of language primitives and the guardian model of computation

used in this thesis have been taken from work done by the M.L.T. Distributed Systems

1. Integers, booleans, characters, and reals are suggested.




Project [Svobod 79, Liskov 79a].
1.8 OQutline of the Thesis

The plan of this thesis is to present the value communication scheme at
successively descending levels of abstraction. At the highest level, Chapter Two
defines the communication primitives as extensions to CLU, and describes how the

language user may define and implement transmissible abstract types.

Chapter Three outlines an implementation scheme for a run-time system
supporting the language extension defined in Chapter Two. The mechanisms for
constructing messages from objects and reconstructing objects from messages are
spelled out in detail. To present the scheme as simply as possible, we postpone

discussion of a number of efficiency-related issues.

oy,

Chapter Four addresses the issue of efficiency, describing optimizations to the

implementation described in Chapter Three.

Chapter Five discusses the conclusions reached in the thesis, including the

applicability of the methods developed here to other problem areas. Among these

W

areas are: the storage of values on secondary memory, displaying values of abstract

objects on terminals, and copying objects.

.

P
~

Ak

%

B e R I R R R T R O s o 2




R X8 S TN

The Language Definition

This chapter describes a number of programming language primitives to support

the communication of values among heterogeneous nodes in a distributed system.

These primitives are presented as an extension to the CLU language. The extended

language defines the meaning of transmission for built-in types, as well as providing

the means to define and implement transmission for user-defined types. Some

problems that arise when defining transmission for cyclic user-defined types are also

addressed.

Rather than attempting to give a formal semantics for value transmission, this

thesis presents informal definitions of the primitives introduced. A formal semantics

for the extended language is a major undertaking in its own right, and lies beyond the

scope of this thesis.

2.1 Goals of the Language

Before presenting the language design, we list a number of criteria that we feel

any message-passing scheme should satisfy.

The scheme should support multiple implementations of a
single type without a combinatorial growth of complexity. In
particular, the addition of new implementations of existing types
must not require changes to existing implementations.

The meaning of transmission for any given type should be
determined by localized, single-level opcrations within the
module implementing the type. Verification of these operations
should suffice to verify the correctness of the module’s
implementation of value transmission.




ez SR O

. 3 T e . . ..
NI | M I T TR T

€

-18-

Message construction, transmission, and interpretation should
be performed by the language implementation, not the user.
The user should be able to indicate the objects whose values are
to be transmitted, and the language implementation should do
the rest.

Any useful scheme must give the programmer a reasonably
simple means to control the effect of transmission on sharing
structure.

Any useful scheme must be efliciently implementable.
(However, we postpone discussing the efficiency of our scheme
until a later chapter, afler examining some possible
implementations.)

2.2 Terminology

In subsequent discussions we adopt the following typographical conventions.
Objects are denoted by letters in cursive script (A, B, C). Names of operations on
objects are written in italics. We use CLU's dollar-sign notation to indicate the type
associated with an operation, where applicable. For example, T$similar and T$equal

are operations defined on T objects.

As in CLU, the basic containers for information are objects. The behavior of an
object is determined by its type. Each type has an associated collection of operations to
manipulate its objects. Objects have both an identity and a value. An object's identity
determines which object it is, while its value is its information content. Objects of
mutable type may change their associated values, whilc objects of immutable type may
not. The identity of an object cannot change. Objects may refer to other objects.
When an object refers to another, we sometimes say the former contains the latter.
When two objects refer to‘ the same object we say that the latter is shared. For a more

complete description of CLU's model of computation, the reader is referred to the

o o0 ikt
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CLU Reference Manual [Liskov 79].

We partition the types in CLU into three disjoint sets: primitive, abstract, and
composite. Primitive types are unstructured, language-defined types such as string,
char, int, real, and bool. Abstract types are user-defined types. Composite types are
composed from language-defined type constructors, of which CLU has six: array,
oncof, record, sequence, struct, and variant. Component types of a composite type may
be either primitive, abstract, or composite. Record's, array's, and variant’s are mutable;
the other composite types are immutable. Objects of composite type serve primarily to
refer to collections of other objects. Primitive and composite types are sometimes
referred to as built-in types. Primitive types and type constructors are required to be
supported at every node, while an abstract type need only be supported at certain

nodes.

A cluster encapsulates the implementation of an abstract type T by defining a
concrete representation for T objects, and by defining T operations in terms of
operations on T's concrete representation. The choice of concrete representation
defines an absiraction function from values of the concrete representation type to
values of the abstract type, denoted by TS$abstract. There is no TSabstract operation

available to users of the language,

In our discussion of transmission, it is useful to define precisely when we
consider two objects to be identical, that is, when they have the same identity. The first
requirement we make of any such definition is that only objects of the same type can
be identical. Accordingly, we define TSidentical to be an operation taking two T
objects, returning true if and only if the arguments have the same identity. Note that

identical is used only for explanatory purposes; there is no corresponding language
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operation currently defined in CLU. TS$identical is defined in the following way:

If T is primitive, then TS$identical is equivalent to TSequal, where
the latter is defined by the CLU Reference Manual.

If T is composite, then two objects are identical if they are the
results of the same invocation of the T$create operation.,

If T is abstract, then two objects are identical if their concrete
representations are identical,

The identical operation is not quite the same as the CLU equal operation. For the
primitive types, and for the mutable compositc types, identical and equal are indeed
equivalent. When defining an abstract type T, the CLU Reference Manual suggests

that proper usage of the T$equal operation requires that:

the equal operation should be an equivalence relation satisfying
the substitution property; i.c. if two objects are equal, than one
can be substituted for the other without any detectable
difference in behavior.[p.80]

For types having well-defined equal operations, it follows that if two objects are

identical, then they are necessarily equal, although the converse may not be true.

Perhaps the most important distinction between identical and equal is that

identical is defined for every type, and is never defined in terms of user-defined

operatiohs. If defined at all, the equal operations of abstract types are defined in terms

1

of user-defined operations.” The identical opcrations for all types are defined by the

language, independently of any user-defined operations.

1. The equal operations of immutable composite types may also invoke equal
operations of user-defined component types.
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In our subsequent examples, we use “A = B" as an abbreviation for

"T$identica A, B)", and "A = B" as an abbreviation for "T$equakA, B)".

2.3 Communication Primitives

We restrict discussion to messages consisting of the value of a single object
(which may, of course, contain other objects). In Chapter Five we will discuss some

more general kinds of messages, but we will see that they introduce no new difficulties.

Objects of type port arc used to identify the recipient of a message. Ports are
parameterized according to the type of value they receive, e.g., a port of type port[int]
can only receive the values of integers. The names of ports may be sent in messages;

however, only the node that created a port may receive messages sent to that port.

Users niay cause the value of an object to be sent to a port by executing a send
statement, indicating the object whose value is to be sent, and the port to which it is to
be sent. A message may be received by executing a receive statement, specifying the
port from which a message is to be taken, the variable to which the resulting object is to
be assigned, and the amount of time the user is willing to wait for the message to arrive.
The language implementation provides buffering of messages between the time they

are sent and the time they arrive.

At the most summary level of description, the result of sending the value of a T
object is to create a new T object, whose value bears some relation to that of the
original. The meaning of transmission for T can thus be charactcrized by a rransmit

operation, mapping T objects to T objects.

For a primitive type P, P$transmit creates a new P object having the same value
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as the original. For example; "abc” = string$iransmif("abe”), 1 = int$transmin(1), etc.
We note that like T$identical and TSabstract, no explicit T$1ransmit operation is
directly available to users of the language. The T$iransmir operation is a device that

;: serves to explain the meaning of value transmission.
2.4 Transmitting Composite Types

The definitions given here concern only the values of objects; by discussing
transmission in terms of values, rather than object identities, we sidestep the problem
of defining the relation of sharing structure to value. This problem is addressed in a

later section.

Transmission for a value of composite type is defined in terms of component

transmission. For example, transmission for the array[T] type is defined informally as

follows: the result of transmitting an array[T] is to create a new array[T] object, having
the same bounds as the old array. Furthermore, the values of the new array’s elements

3 ) are the transmitted values of the old array’s elements.

Transmission for the other composite types can be defined similarly. Let A be an

object of composite type T. When the value of A is sent by a node, A’s component
objects are transmitted in some canonical order (c.g.: ascending order for array’s,
lexicographical order for record’s). When the T value is received, the values of the

components are received in canonical order, component objects are constructed, and a
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new T object is created and initialized from the component objects.
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2.5 Transmitting Abstract Types

The definition of a transmissible abstract type specifies the meaning of
transmission for that type by defining a transmit operation. Just as correct usage
demands that the copy operation for an abstract type preserve the value of the object
being copied, correct usage demands that the transmit operation for an abstract type
preserve the value of the transmitted object. In other words, the inforhation content
of the received object should be the same, in some sense, as the information content of
the sent object. The problem of defining transmit for an abstract type T is thus the
problem of dcciding which properties of T objects constitute their values, and what
constitutes preservation of those properties. An important area where such issues arise
is the question of the relation of value to sharing structure. Some of these issues are

discussed in the section on sharing,
2.5.1 Implementing Transmissibility

We say that a type is transmissible if it has a transmit operation. For an abstract
type T, the transmii operation is defined in the following way. A transmissible type XT
is chosen, called the external representation type of T, along with a mapping from
values of T to values of XT. This mapping is denoted by T$encode, and the inverse
mapping by TSdecode. The value of the object created by T$iransmit is defined by the

composition of TS$encode, XT$1ransmit, and T$decode:
T$1ransmifA) = TSdecode( XTStransmiTSencode(A))).

The external represcntation of an abstract type T is specified by the definition of T;
thus all clusters implementing T use the same external representation. The external

represcntation type may be abstract, or composed from abstract types, but it must be




transmissible.

The meaning of transmission for T values is defined only in terms of the 1
correspondence of T values to XT values (encode and decode), and in the meaning of
transmission for XT values (XTS$transmir). This definition is independent of any

cluster’s choice of concrete representation.

Each cluster implementing a transmissible type T must supply operations to

implement the encode and decode mappings. The T$encode operation takes a T object,

and returns an object of the corresponding external representation type, having the

corresponding valuc. The T$decode operation performs the inverse mapping from an
object of the external representation type to the corresponding abstract object. The
encode and decode operations of a type are invoked automatically by the language

implementation when a send or receive statement is executed.

A value of abstract type T is transmitted by the language implementation in the

following way (Figure 1): When a node sends the value of a T object, TSencode is

‘ applied to the object, and the value of the resulting external representation object is
sent (possibly by invoking further encode’s). When the target node receives the

mcessage, an external representation object is constructed from it, and T$decode is

Py IR R

applied to it to produce an object of type T.

The encode and decode operations of a cluster cncapsulate the translations
between the concrete and external representations. These operations are completely
defined within the cluster, contributing to modularity. To verify that a cluster correctly
implements value transmission, it sufTices to verify the cluster’s encode and decode

operations. The cxternal representation also allows new T clusters to be written




Fig. 1. Delinition of T$transmit
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without affecting existing ones, since all T clusters communicate by converting local
concrete representations for T values to XT values in a standard way as the values cross

node boundaries.

Let T be a transmissible type supported at two guardians. Let CT1 and CT2 be
the concrete representation types used by each, and XT the external represcntation
type. As usual, let TSencode and T$decode denote the mappings between values of T
and values of XT. Let TS$abstracil and TSabsirac2 denote the mappings between
values of CT1 and CT2 and values of T. The functionality of these mappings are

illustrated in Figure 2.

The user of the T type needs to know the meaning of T$:ransmit, but he does not
need to know the nature of Ts external representation. The external representation of
a type T is only of intercst to the implementors of new T clusters. The meaning of
transmission for primitive types and abstract types can be specified in the same way,
without reference to whether values are transmitted directly or reduced to simpler

transmissible values.
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Fig. 2. The Relations of Encoding Operations
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2.6 An Example

To serve as an example of a typical abstract type, we introduce a single-key table
which stores pairs of objects, where one object (the key), is used to retrieve the other
(the item). The single-key table type has operations for creating empty tables, inserting
pairs, fetching the item paired with a given key, deleting pairs, and iterati!\ig through all

key-item pairs.

To present the example, we define some simple syntactic constructs. As in CLU,
the concrete representation for a type is declared within its cluster by use of the

distinguished equate:

rep = type_spec
where "typc_spec” stands for a type specification. In addition, the external

representation for a type is declared by a similar distinguished equate:

oM™ .

)



xrep = type_spec

The interface specifications for the encode and decode operations of a transmissible
type T are:

encode: proctype (T) returns (xrep) signals(not_possible(string))
decode: proctype (xrep) returns (T) signals(not_possible(string))

where xrep is the external representation type of T.

When writing a cluster parameterized by a type T we use the syntax:

where T 1in transmissible_types

to indicate that we requirc value transmission to be defined for the parameter type.
Transmission is defined for the primitive types, and for abstract types having encode
and decode operations. Transmission is also defined for composite types whose

component types are transmissible.

Let us examine how a single-key table might be made transmissible. This type is
of general utility, yet it admits many specialized concrete representations: a guardian !
that rarely deletes bindings might choose a representation that permits quick insertion
and lookup operations, at the expense of the delete operation, while another guardian

might use a proprietary hashing function, or a complicated lisi structure representation.

The most obvious candidate for this type’s external representation is an array of
;‘  key-item pairs. The encode operation for the single-key table creates an empty array of
key-item pairs, extracts cach pair from the table, and inscrts it in the array. The decode E
operation creates an empty table, extracts cach pair from the external representation

object, and inserts it in the table. A sample implementation is shown in Figure 3.

§
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Fig. 3. T'he Single-Key Table Type

table = cluster [key_type, item_type: type] is
create, % Create a new, empty table
bind, % Add a new key-item pair
lookup, % Given a key, return the associated item
delate, % Remove a key-item pair
elements % iterate through all key-item pairs

where key_type, item_type 1in transmissible_types

tab = table[key_type, item_type]

pair = struct [key: key_type, item: item_type]
rep = ... % complicated structure

xrep = array[pair]

% Code for other operations ...

encode = proc(t: tab) returns (xrep)
ans: xrep := xrep$new()
for k: key.type, it: item_type in tabSelements (t) do
xrepSaddh( ans, pair${key: k, item: it})
end % for
return (ans)
end encode

decode = proc (x: xrep) returns (tab)
t: tab := tabScreate()
for p: pair in xrep$elements(x) do
tabSbind (t, p.key, p.item)
end % for
return (t)
end decode

end table

2.7 Sharing

CLU objects may refer to other CLU objects. When an object is referred to more
than once, we say that object is shared. Since mutable objects can be shared, the

behavior of an object may depend not only on the values of its components, but on the

” A




way those components are shared. Consider an array of objects of some mutable type
T. If two elements of the array share a single T object, then a change to that object
through one element will be observable as a change to the other. Alternatively, if the
two elements contain distinct T objects, then a change to one element will not affect the
other. Since the behavior of the two arrays is different, one can plausibly argue that

they have different values, and that transmission should distinguish between them.

Although it may be useful to have the transmit operation for a type preserve
sharing when transmitting a single value, it does not appear useful to preserve sharing
between objects sent in distinct messages. To capture this aspect of transmission, we
redefine the transmit operations to take a second argument: a message context that
defines the scope of sharing preservation by identifying the message being transmitted.
A message context can be viewed as uniquely identifying a particular execution of a

send statement.

Let M be a message context, and let A and B be T objects. We further redefine

the transmit operations to satisfy the following property.
Ti: A = B = TSiransmi(A, M) = TStransmifB, M)

In other words, transmit preserves identity; if the value of an object is transmitted twice
in the course of executing a single send statement, a single object is created at the

receiving guardian.

Using the new dcfinition of transmit, we will now specify the effect of value
transmission on the sharing structure of objccts of composite type, by informally
stating a number of propertics of array[T])$1ransmit. The notation used to present these

properties is used for brevity. In the following statements, A and B denote any array([T]
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objects, and M denotes any message context. The first two properties state that the

resulting array has the same bounds as the original.

Al: array[T]$low(array[T]$transmid A, M)) = array[T]$low(A)
A2: array[T]$size(array[T]$1ransmiA, M)) = array[T]$size(A)

The third property states that the value of each component of the new array is the
transmitted value of the corresponding component of the old array. Moreover, sharing

of components is preserved.

A3: (v k) (k is a legal index of A) = TS$transmit(Ak], M) = array[T]$1ransmid(A,
M)k]

The transmit operations for the other composite types are defined similarly.

The language primitives developed in this thesis use the notion of object identity

as the basis for defining the effect of the transmit operations on sharing structure.

Object identity was by no means the only possible choice. One alternative, similar to

that taken by the CLU copy operation for composite types, is to ignore sharing
‘\ completely. The effect of applying the copy operation to an array[T], A, (where T is a

mutable type) is to create a new, disjoint array[T], A’. Corresponding elements of A

and A’ have the same value, but any sharing among elements of A is not reflected by

sharing among elements of A’

A user wishing to preserve sharing in such a scheme must explicitly encode
f sharing information when the value is sent, and rcconstruct it upon receipt. For
example, to transmit an array[T], A, preserving sharing among the clements, one might

create an array[T], B, referring to each T object in A only once, and an array{int], C,
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having the property that for every legal index k, B[C[k]] = A[k]. Sharing structure is

explicitly encoded in the integer elements of C.

We reject this approach because we feel that sharing structure is part of an
object’s value, and so should be preserved by transmission. Moreover, although it is
the responsibility of the language user to define and implement the effect of
transmission on the sharing structure of an abstract type, the language definition
should make the most common and useful definitions easy to implement. Just as for
composite types, the sharing structure of an abstract type is part of its value. It is our
opinion that a well-structured definition of value transmission for an abstract type
should have properties analogous to A3; i.e., it will preserve its own internal sharing

structure.

Another approach is to use equal, rather than identical, as the basis for preserving
sharing. This approach has the drawback that the equal operation for abstract types are
necessarily user-defined, while identical is not. To implement value transmission so as
to preserve equal, each transmissible type would have to provide an equal operation, an
awkward requirement. Moreover, a language implementation that must frequently
invoke user-defined equal operations is likely to be much less efficient than one that
can perform an implementation-defined check for object identity. In a recent
implementation of this scheme by the author, testing for identity of composite objects

is done by a simple test for pointer equality.

The descriptions of the transmission algorithms given in this chapter suffice to
determine the order of application of transmit operations when a value is transmitted.
Invocations of encode and decode operations caused by the application of transmit

operations may be observable by the user, since encode and decode are user-defined,

-




—

et T s

. ng‘ﬁv-""

RSt SR s 2. T STYRLY e

-32-

and may have side-effects. Accordingly, we specify that for each object whose value is

transmitted in a given message context, encode is invoked at the sending guardian at
least once, and decode is invoked at the receiving guardian at least once. The language

definition places no restrictions on the order or number of those invocations.

2.8 Two Examples

We use the table type to illustrate the two kinds of sharing properties that are of

interest to the definer of a type’s rransmit operation. The first property concerns the
effect of transmission on internal sharing structures. Suppose a single item / is bound
to two keys K| and K, in a table T. Let the value of T be transmitted in a message
context M, and let T° = tableStransmidT, M). For any reasonable definition of
table$zransmit, T'.will contain keys K" and K, corresponding to K, and K,inT. By
the effect of transmission on internal sharing we mean that the definition of
table$transmit should specify whether K | and Kz' continue to share a single item, or

whether they are each bound to disjoint items.

The second important sharing property concerns the effect of transmission on
sharing relations between distinct objects whose values are sent in the same message.
By contrast to internal sharing, which concerns sharing relations within a single object,
we call the second sharing property external sharing. Let T and T, be tables sharing a
single item /. Suppose the values of T, and T, are transmitted in a single message,
where Tl' = table$StransminT I M), and Tz' = mbIcSIransmil(Tz. M). By the effect of
transmission on external sharing we mean that the definition of table$transmit should
specify whether Tl’ and Tz’ continue to share a single item, or whether they contain

disjoint copies of /.
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The only way we have provided for table$:ransmit to preserve external sharing of
items is to have it invoke item$zransmit on those items. Accordingly, we define the
effect of transmission on the internal and external sharing structures of the table type

in the following way. Let M be a message context, T a table, and K a key in the table.

TAB1: table$lookup(tableSiransmiT, M), key$transmilK, M)) =
item$transmitableSlookup(T, K), M))

TABI guarantees two properties. First of all, it guarantees that sharing of items within
a given table is preserved. Secondly, it guarantees that sharing of items between
distinct tables is preserved when the tables’ values are transmitted in a single message
context. Let M be a message context, and let T y and T2 be (not necessarily distinct)

single-key tables. Suppose:
I = luble$lookup(T1, K E tableslookup(Tz. Kz)'
Let:

Tl' = table$lransmil(Tl, M)
T, = table$eransmidT ,, M)
K, = keyStransminK |, M)
K, = key$transminK,, M)

By two applications of property TABI:

tableSlookup(T I K ]') = item$ransmidl, M)
tableSlookup(T )", K') = item$iransmitl, M).

By property T1, the right hand sides are identical, so sharing is preserved:
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tableSlookup(T |, K,") = table$lookup(T ", K,)).

An informal verification that the single-key table implementation listed above
satisfies TABI is quite straightforward. By inspecting the code of the encode operation,
we can see that if item / is bound to keys K 1 and K2 in tables Tl and T2 respectively,
then / is shared by two key-item pairs in the external representations, having keys K|
and KZ’ By a similar argument, decode also preserves sharing of items. To prove
TABI, it suffices to obscrve that xrep$transmit preserves sharing of items, an
obscrvation that follows dircectly from the definition of transmir for the array types. If
transmission of the external representation did not preserve sharing of items, then the
encode and decode operations of the abstract type would have to be written to discover,

encode and reconstruct the sharing structure.

If (for some perverse reason) the defini‘ion of the single-key table type had
specified that transmission should not preserve external sharing of items, that effect
could have been achieved by having the single-key table’s external representation

contain distinct copies of the item.

To illustrate how the transmit operation of a new type can be composed from the
transmit operations of subsidiary types, let us examine the implementation and
verification of a two-key table. A two-key table differs from a single key table in that it
permits two types of keys to be used to retricve items. A single item may be bound to
any number of keys of either type. Just as for single-key tables, we reguire that if a

single item is bound to several keys, then that sharing is preserved by transmission.

Since we already have a transmissible single-key table, let us choose, as an

external representation for the two-key table, a struct consisting of two single-key
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tables, each accepﬁng one of the two types of keys.

xrep = struct[tabl: tablel, tab2: table2]
We define the correspondence between values of the abstract type and values of the
external representation type in the most straightforward manner: for each key-item
pair in a two-key table, the appropriately typed single-key table component of the
external representation contains the same pair. This definition implies that if the same
item is paired with keys of different types in the two-key table, then that object will be

shared by both single-key tables in the external representation.

We can verify informally that this choice of external representation preserves
sharing of key-item pairs. From the definition of xrep$/ransmir, we know that the
value of each single-key table component is transmitted by its own transmit operation,
using the same message context. Property TABI ensures that sharing of items both
within a single-key table and between the two single-key tables is preserved. We
observe that without property A3 to preserve sharing, we could not have constructed

and verified the sharing properties of cither table type as easily as we have.

To conclude the example, let us sketch an implementation for the two-key table.
We choose a concrete representation identical to the external representation, with the
same correspondence between concrete values and abstract values. The operations to
add, delete, change, and retrieve pairs can be implemented in a straightforward
manner. The encode and decode operations are particularly simple: they just return
their argument after performing an up or a down. The implementation is illustrated in

Figure 4.
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Fig. 4. The Single-Key Table Type

two_key_table = cluster [ki_type, k2_type, item_type: type] is ...

tablel = table [kil_type, item_type]
table2 = table [k2_type, item_type]

rep = record [tab1l: tablel, tab2: table2]
xrep = rep

encode = proc (x: cvt) returns (xrep)
return(x)
end encode

decode = proc (y: xrep) returns (cvt)
return(y)
end decode

end two_key_table

2.9 Transmitting Cyclic Structures

When an object is created, CLU requires that it be given a value; there is no such

1

thing as an uninitialized object in CLU." This restriction adds to the safety of the

language, since every object that can be named has a legal value.

Let A be an object of abstract type, and let A’ be its external representation. We
say that A’ is self-referential if it refers to A. Values cannot be transmitted using
self-referential external rcpresentations, as may be illustrated by the following
example. Consider the int_list cluster shown in Figure 5 which implements linked lists

of integers. The concrete represcntation is just a record with two components: the first

1. Aithough there may be uninitialized variables.
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Fig. 5. Linked List of Integers

int_list = cluster 1s ...

link = oneof [next: int_list, empty: null]
rep = record[car: int, cdr: link]
xrep = rep

encode = procg{x: cvt) returns(xrep)
return(x)
end encode

decode = proc(y: xrep) returns (cvt)
return(y)
end decode

ond int_1list

is an integer, and the second is either an int_list, or null. The external representation is
the same as the concrete representation. We encounter a problem when we try to
decode a message containing a circular list. To construct an int_list from a message, we
must first have constructed its external representation. To construct the external
representation object, we must first construct the objects it names. However, in the
case of a circular int_list, the external representation contains the decoded int_list itself.
The requirement that an object have a well-defined value before it can be named
means that both the int_list and its external represcntation must be created before
being named by the other, and thus neither can be constructed. Note that if the list is

acyclic, then the external representation is not self-referential, and no such problem

results.

It might appear reasonable to state that an external representation is not
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well-formed if it is self-referential. Unfortunately, such a restriction makes the
transmission of cyclic objects quite difficult. Consider the problem of making
potentially 'cyclic int_list's transmissible. Whatever external representation we choose
for the int_list type cannot itself contain an int_list component, since otherwise we
cannot guarantee that the external representation is not self-referential. A simple
strategy is to place the integer components in an array, along with some additional
information indicating the index in the array of the element to which the last element
was linked (with a special value for a null link). What the user is really doing here is
evading the CLU requirement that every named object have a value, by disguising an

object name as an array index.

We can take two approaches to the problem of transmitting cyclic structures.
One option is to leave the implementors of cyclic types to their own devices when
writing those types’ decode operations. As a justification for this approach we might
observe that language support for such transmission requires extending CLU’s object
semantics to permit naming objects before they are constructed, complicating both the

language definition and its implementation.

The other option is to provide some explicit support for the transmission of cyclic
structures. We have seen that either course forces the user to name objects before they
have been given values. Without language support, the user must disguise the nature
of such references from the language, a clear case of having the language hinder, rather
than help the problem of program design. It seems unreasonable and inclegant to
requirc the programmer to take heroic measures both to encode values and to

circumvent the language definition,

Whether transmission of self-referential external representations is to be
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supported is primarily a question of programming convenience, in the same way that

implicit transmission of sharing information is a question of convenience. We have

seen that without the ability to use self-referential external representations the

transmission of cyclic structures becomes quite awkward. For this reason, we choose to

relax the requirement that an object have a value before it can be named. However
such references may only exist while a message is being decoded, and the

implementation of the decode operation must satisfy certain restrictions,

The restriction we impose on decode operations can be informally summarized as
follows: Let A be an object of abstract type T, and let A’ be its external representation.
A’ may contain A if T$decode applied to A’ does not use the value of A. In other words,
we allow A’ to name A before A has been initialized, but we forbid T$decode to access

the value of A.

Let us make this notion more precise. Given a procedure P and an object A of
abstract type T, we seek to formulate a rule that ensures that P does not depend on the
value of A. We do not require that this rule be exact, but we do require that it be
conservative; whenever the rule is followed, \;/e are safe, although we do not mind if

the rule is overly strict.

Clearly, any procedure that operates on A’s concrete representation uses its value,
Moreover, the only procedures that can operate on A's concrete representation are the
operations of the T cluster. This suggests the following rule: A procedure P uses the
value of an object A of abstract type T if an invocation of P applies a primitive T
operation to A. This rule is safe, since without invoking an operation of the T cluster, P
can only usc the name of object A. The rule is conservative, since it is possible that an

operation of the T cluster might not access the concrete representation of A,
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If the decode operation constructing A uses the value of B by invoking a cluster
operation on it, then the construction of B must precede the construction of A. We say
that A depends on the value of B if B is in the transitive closure of the "uses the value
of" relation induced by applying decode to A. If A depends on B, then B must be
decoded before A. If A depends on itself, then its construction must precede itself, an

obvious impossibility.

We may now make precise our restriction on de “ode operations that operate on
self-referential external representations. A decode operation is legal if the "uscs the

value of™ relation of the object being decoded is acyclic.

This restriction permits an object to be named by its own external representation,
facilitating the transmission of cyclic structures. The int_list cluster as shown above
will now legally transmit cyclic lists, since corretly decoding an int_list depends only
on the identity of the following int_list, not on whether it has been initialized, as no

operations are invoked on the successor.

We can display an illegal decode operation by choosing a different concrete
representation for the int_list type (Figure 6). In this cluster’s concrete representation,
cach clement having a successor contains the value of the successor's integer, as well as
its own. The external representation is the same as the one used above. Each int_list
object depends on its successor, since decode invokes an int_list operation (car) on the
next int_list. If the list is cyclic, an int_list depends on itself, and the decode operation
fails the restriction. When implementing a new cluster for an existing transmissible
type, it is the responsibility of the cluster writer to choose a concrete representation

compatible with a legal decode operation.

.
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Fig. 6. An Incorrect int_list Implementation

int_list = cluster 48 car, ...

rep = record [car: int, cdr: link]
tink = oneof [non_empty: cdr_info, empty: null]
cdr_info = record [next_list: int_list, next_car: int]

xrep = record [car: int, cdr: xlink]
xlink = oneof [non_empty: int_list, empty: null]

car = proc(x: cvt) returns(int)
return(x.car)
end car

encode = proc(x: cvt) returns(xrep)
% Construct xrep's link
x1: xlink
tagcase x.cdr
tag empty:
x1 := xlink$make_empty(nil)
tag non_empty(ti: cdr_info):

x1 := xlink$make_non_empty(ti.next_list)
end % tag
return(xrep${car: x.car, cdr: x1})
end encode

decode = proc(y: xrep) returns (cvt)
% Extract record components
1k: link
tagcase y.cdr
tag empty:
1k := link$make_empty(nil)
tag non_empty(list: int_list):
1k := link$make_non_empty(
cdr_info${next_car: int_listScar(list),
next_list: 1ist})

end % tag
return(reps${car: y.car, cdr: 1k})
end decode

end int_list

Curiously, we can encode and send a self-referential external representation with

no apparent difficulty. The nature of this asymmetry between sending and receiving
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can be illuminated by observing that on the sending side, a self-referential external

representation names the argument to a past invocation of encode, whereas at the

receiving side, such an external representation names the result of a future invocation

of decode.
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An Implementation Design

This chapter presents an implementation design for the value transmission
scheme described in the pre\)ious chapter. We describe run-time machinery to
construct messages from objects, and to reconstruct objects from messages. The
mechanisms introduced here are intended primarily as explanatory devices. As a
consequence, we have made no attempt to optimize run-time perfbrmance. or to
minimize the number of constructs used. Although we feel that questions of efficiency
are extremely important, we also feel that the structure of the implementation can best
be conveyed by postponing a discussion of efficiency-related issues to the next chapter.
By presenting the complete implementation design in two stages, we hope to
distinguish fundamental aspects of the implementation from details intended to

enhance performance.

Throughout this chapter, we refer to the construction of a message denoting a
value as encoding the value, and to the interpretation of a message denoting a value as

decoding the value,
3.1 Some Uselul Data Abstractions

This section defines some data abstractions used to build the value encoding and
decoding mechanisms. Operation definitions follow the terminology of the CLU
Reference Manual: argl, arg2, etc. refer to the operation's arguments. The interfaces
of some of the data abstractions uscd difTer slightly according to whether they are
being used to cncode or decode values. Where appropriate, we prefix the names of
abstractions used to encode values with the letter "e”, and those used to decode values

with the letter "d".
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3.1.1 Message Streams

A message stream is an abstraction of the communication medium, encapsulating
specific characteristics of the medium that are irrelevant at the level of abstraction
addressed here, such as the protocols used, or when messages are really sent. There are
two kinds of message strcams: encoding streams, which are used to send an object’s
value to a foreign port, and decoding streams, which are used to receive a value

previously sent to a local port.

Information is transmitted in discrete units called rokens. When a value is sent,
an encoding stream is created, and the value is placed in the stream as a sequence of
tokens. A decoding message stream releases tokens in the same order they were placed
into the original encoding stream. The external representation mechanism ensures that
the sequence of tokens used to encode a value is independent of the concrete

representation uscd by a guardian.

Encoding message streams are implemented by the estream type:

open: proctype(port) returns(estream)

Creates an encoding stream used to send tokens to the indicated foreign
port.

insert: proctype(estream, token)
Inserts a token into an encoding stream.
current: proctype(estream) returns(stream_addr)

Returns the stream address of the next token. Stream addresses (see below)
are uscd to refer to tokens already in the stream.

close: proctype(estream)
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Indicates that the user does not intend to use the stream for further output.
Decoding streams are implemented by the dsrream type:

open: proctype(port, timeout) returns(dstream) signals(timeout)

Creates a decoding stream for reading tokens previously sent to the port
indicated by argl. If the message is delayed due to node failure or
communication failure, the timeout argument indicates how long the user
is willing to wait. [f the indicated amount of time elapses without a
message, a timeout exception is signalled.

extract: proctype(dstream) returns(token) signals(timeout)

Removes and returns the next token from the stream. If the next token
does not become available for the amount of time specified in the timeout
argument to the open operation, a timeout exception is signalled and the
stream is disabled.

peek = proctype(dstream) returns(token)

Behaves just like extract, except that it does not remove the next token
from the stream. This operation will not be used until the next chapter.

current: proctype(dstream) returns(stream_addr)

Returns the stream address of the most recently extracted token.

close: proctype(dstream)

Indicates that the user does not intend to use the stream for further input.

3.1.2 Tokens

There are three kinds of tokens (Figure 7). Header tokens (Figure 8) mark the
start of a new value of composite or abstract type. They may contain type or size
information. Back reference tokens contain the stream address of a token previously

placed into the stream. Sharing is indicated by back reference tokens. Data tokens
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Fig. 7. Token Type Definition

token = oneof [data: data_token, % Primitive type
header: header_token, % Composite or abstract
back_ref: stream_addr] % Indicates sharing

Fig. 8. Header Token Type Definition

header_token = oneof [
abstract_hdr: null, % abstract value

oneof_hdr: int, % tag value

variant_hdr: int, % tag value

array_hdr: record [low, size: int],

seq_hdr: int, % size

record_hdr: int, % number of selectors

struct_hdr: int % number of selectors
]

(Figure 9) represent values of primitive type such as integers, strings, booleans, etc. A

stream address uniquely identifies a token in a given message stream.

.
¥.
$
14
: Fig. 9. Definition of Data Token Type
3

[ ¥
$ data_token = oneof [
i bool: bool,
v char: char,
! int: int,
Y null: nll,
- real: real,
E string: string)]
;.

P

i
34
3
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3.1.3 Maps

We recall from the previous chapter that if the value of the same object is sent
twice in the same message, then a single corresponding object is constructed by the
receiver. Objects of type map are used to ensure that transmission preserves sharing. A
map contains corresponding pairs of objects and stream addresses. There are several
kinds of maps. When encoding values, the emap type is used to locate the stream
address of a given object’s encoded value. When decoding values, the dimap type is
used to locate the object constructed from the value encoded at a given stream address.
The emap type has the tollowing operations:

create: proctype() returns({emap)

Creates an empty cncoding map.

enter: proctype[T: type](emap, stream_addr, T) signals(exists)

Enters arg? as the stream address where the encoded value of arg3 starts. If
arg2 has already been entered, exists is signalled.

seen: proctype[T: type](emap, T) returns(bool)

If arg2 has been entered, the result is true, otherwise the result is false.

lookup: proctype[T: type](emap, T) returns(steam_addr)
signais(not_found)

If arg? has been entered, the associated stream address is returned,
otherwise not_found is signalled.

The dmap type has the following operations:

create: proctype() returns(dmap)

Creates an cmpty decoding map.

enter: proctype[T: type](dmap, VT, stream_addr) signals(exists)
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Enters arg2 as the object decoded from the value at the stream address
denoted by arg3. If arg2 has already been entered, exists is signalled.

lookup: proctype[T: type](dmap, stream_addr) returns(T)
signals(not_found)

If arg2 has been entered, the associated object is returned, otherwise
not_found is signalled.

seen = proctype[T: type](dmap. stream_addr) returns(bool)

Returns true if an object of type T has been entered in the map with the
given streany address. This operation will not be used until the next
chapter.

Finally, we need a third kind of map that just remembers the identities of the
objects that have been entered. We call this type the initialization map, for reasons that
will be explained later. The initialization map is implemented by the imap type, and
has the following operations:

create: proctype() returns( imap)

Creates an empty initialization map.
enter: proctype[T: type](imap, T) signals(exists)

Enters arg2 in the map. If arg2 has already been entered, exists is signalled.

elements: itertype[T: type](imap) ylelds(T)

Yields and removes all previous entries of type T.

empty: proctype(imap) returns(bool)
Returns true if there are no objects of any type currently in the map.
is_initialized: proctype[T: type](imap) returns(bool)

Returns false the first time it is invoked with the given parameter type, and




true thereafter.

3.1.4 Contexts

Objects of type context serve to associate the message stream and the maps used
to encode or decode a single value. There are two kinds of contexts: encoding contexts

and decoding contexts. The context types are dcfined by the following eduates:

econtext
dcontext

record [emap: emap, estream: estream]
record [dmap: dmap, imap: imap, dstream: dstream]

3.2 The Algorithm for Encoding Values

The language implementation encodes an object’s value by recursively traversing
the object, rather like a LISP map function. As the object is traversed, the
implementation creates tokens and places them in a message stream, using a map to

keep track of sharing information.

Executing a send statement on an object of type T is equivalent to invoking the
procedure shown in Figurc 10. The send statement crcates a new context for the
message, opening a message stream and creating an empty map. T$put is then invoked
to place the value of the T object in the stream as a sequence of tokens. After TS$put

returns, the stream is closed.

The language implementation provides every transmissible type with a put
operation. The put operations are part of the language implementation; their existence

is not visible to the user. The pur operation for the type T has the following calling

sequence:
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Fig. 10. Effects of the Send Statement

send = proc[T: type](x: T, p: port[T])

% Create a new encoding context,

em: emap := emap$create()
es: estream := estream$open(p)
cxt: econtext := econtext${emap: em, estream: es}

% Encode the value.
TSput(x, cxt)

% Close the stream.
estream$close(es)

oend send

put: proctype(T, econtext)

The put operations for abstract and composite types preserve sharing in the
following way. When put is invoked, it checks whether the object being sent has
previously been entered in the map. If it has, then the associated stream address is
extracted. A token containing a back reference to that strecam address is put into the
message stream, and T$put returns. 1f the object has not been previously encountered,
it is entered in the map with its stream address. The put operation proceceds differently

depending on whether its type is composite or abstract.

For an abstract type T, a header token is placed in the stream, and the external
representation is created by applying T$encode to the T argument. XTS$put is then
invoked with the new external representation object and the old context. The put

operation for an abstract T is illustrated in Figure 11.

For a composite type, a header token containing type-specific information is then

placed in the message stream, and the pur operations of the components arc invoked.
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Fig. 11. The Put Operation for an Abstract Type T

put = proc(x: T, cxt: econtext)

% Has this object been seen before?
if emap$seen[T](x. cxt.emap) then

o ———

% Find the stream address of the object.
back: stream_addr := emap$lookup[T](cxt.emap, x)

% Output a back reference to the object.
tok: token := token$make_back_ref(back)
estream$insert(cxt.estream, tok)

else
% A new obhject, enter it in the map.
next: stream_addr := estream$current(cxt.estream)
emap$enter[T](cxt.emap, x, next)

e e A A RSB

% Create and output a header token,

htok: header_token := header_token$make_abstract(nil)
tok: token := token$make_header_token(htok)
estream$insert(cxt.estream, tok)

v o, s ‘v~ St

% Create the external representation.
y: xrep := TSencode(x)
xrepSput(y, cxt)

end % if

end put

Figure 12 contains the text for array[T]$put.

If T is primitive, the object’s value is encoded directly into a data token. Figure

13 contains the text for int$put.
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Fig. 12. The Put Operation for the Array[T] Type

put = proc(x: array[T], cxt: econtext)

% Has this array been seen before?
it emap$seen[array[T]](x, cxt.emap) then

% Find the stream address of the object.

back: stream_addr := emap$lookup[array[T]](cxt.emap, x)

% Output a back reference to the object.
tok: token := tokenSmake_back_ref(back)
estream$insert(cxt.estream, tok)

olse
% A new object, enter it in the map.

next: stream_addr := estream$current(cxt.estream)

emapSenter[array[T]](cxt.emap, x, next)

% Create and output a header token.
htok: header_token :=
header_token$make_array(
array_hdr${low: array[T]$low(x),

size: array[T]$size(x)})
tok: token := token$make_header_token(htok)

estream$insert(cxt.estream, tok)

% Output each element.
for eim: T in array[T]3elements(x) do
T8put(elm, cxt)
ond % for
end % if

ond put

Fig. 13. The Put Operation for the Int Type

put = proc(x: 1nt, cxt: econtext)

dtok: data_token := data_tokenSmake_int(x)
tok: token := token$make_data_token{dtok)
estream$insert(cxt.estream, tok)

end put
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3.3 The Algorithm for Decoding Values

The language implementation decodes a value by removing tokens from the
message strcam and building up an object having the value represented. The
implementation remembers the identities of objects constructed, so that when a back
reference token is cncountered, the system can identify the object indicated by the

back reference.

The scheme described supports the use of self-referential  external
representations. To keep the explanation as simple as possible, we ignore the question
of efficiency, and present a simple scheme that, in most cases, is more powerful than is

strictly needed. In the next chapter we discuss ways of making this scheme more

efficient.
13.1 Self-Referential External Represcentations

We recall that if A is an object, and A’ its external representation, A’ is
self-referential if it contains A. We stated in the previous chapter that to decode an
object having a sclf-referential external representation it is necessary to name the object
before it has been given a value. The implementation scheme adopted here permits an
object to be named before its value has been reconstructed by creating a preliminary
uninitialized version of the object. The identity of the uninitialized version is the

identity of the object being decoded, although its value is undefined.

We cemphasize that uninitialized versions are part of the language
implementation, not part of the language. The user can never observe, or operate on,

an uninitialized object version, Uninitialized versions can exist only while a receive is

in progress.

w8
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3.3.2 Order of 'nitialization

Let A be an object of type T. When should an uninitialized version of A be used,
and when should the completed version be used? As explained in the previous
chapter, A cannot be initialized until the all the objects whose values are needed to
initialize A have been initialized. This requirement has different implications for

built-in types than for abstract types.

If T is primitive, then A is constructed from a single token. 1f T is composite, the
value of A consists of the identities of its components, not their values. Thus, the
initialization of an object of built-in type does not depend on any other object having

been previously initialized.

If A is abstract, then A cannot be decoded until all the objects whose values are
used by T$decode have been decoded. If any object whose decode precedes A's refers
to A, it must refer to an uninitialized version. In particular, no lower-level decode
operation may invoke a T operation on an uninitialized version of A. Conversely, A
must be decoded before any object whose decode operation depends on A can be

decoded.

Reflecting the different degrees of dependency, values are decoded in two stages.
in the first stage, called the setup stage, the values of primitive and composite type
contained in the message are decoded. References to objects of abstract type are
constructed as references to uninitialized object versions. No user-defined decode
operations arc invoked at this stage. In the second stage, called the initialization stage,

all uninitialized object versions are initialized in a safe order.

Values of built-in type are decoded before values of abstract type because the
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former can be efficiently decoded entirely by the language implementation. In
particular, uninitialized versions of objects of composite type are protected from access
by decode operations, since user-written procedures are not invoked uitil the

initialization stage, by which time all objects of built-in type will have been initialized.

How do we prevent decode operations from operating on uninitialized versions of
abstract objects? The order in which abstract objects must be decoded depends on the
order in which their values are used by decode operations. Although this order might
be determined by examining the text of all the decode operations invoked in the course
of a receive, such an examination seems impractical. We choose to determine a proper
order by initializing object versions only when an attempt is made to access the object’s
value. Since the values of the objects are constructed only when they are needed, this
control structure is a kind of lazy evaluation [Friedman 76, Hender 76). We call this
strategy lazy decoding. When an operation of abstract type T is invoked from a decode
operation, the language implementation checks each argument of type T to see whether
it has been initialized. If it has, the invocation proceeds. If it has not, the current
invocation is suspended, and the decode operation of the uninitialized object is invoked
to initialize it. As soon as all T arguments have been initialized, the suspended
invocation is resumed. This strategy guarantees that objects are decoded in an order
consistent with the dependency relations described above, since an object is always

decoded before its value is used, and no object is decoded prematurely.,

Exccuting a receive statement is equivalent to invoking the procedure shown in
Figure 14. The receive statement creates a new decoding context, opening a message
strcam and creating an empty map. T$ger is then invoked to implement the sctup

stage, and T$initialize is invoked to implement the initialization stage. Finally, a

e nan . —ctend

Y
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cleanup procedure is invoked to reclaim some unneeded storage.

3.3.3 Represeatation of Uninitialized Object Versions

We assume the language implementation uses object references of fixed size,

[Snyder 79], as do all current CLU implementations. Use of fixed-size references

means that it is possible to determine the storage required by an object from the
information in its header token. In this way, we can allocate storage for an object of

i composite type before decoding that object. In this implementation, a reference to an

i

uninitialized object version of composite type is a reference to the storage that will

eventually be used by the initialized version.

N

We construct the uninitialized version of an object of abstract type by

Fig. 14. Effects of the Receive Statement

receive = proc[T: type](p: port[T], time: timeout)
returns(T) signals(timeout) 1

% The setup stage:

: % Create an empty decoding map. |
? dm: dmap := dmapS$create()
v % Open a message stream. 1
& ds: dstream := dstream$open(p, time)
i % Create an empty initialization map.
i im: imap := imapS$create()
M cxt: dcontext := dcontext${dmap: dm, imap: im,
. dstream: ds}
TR x: T := TSget(cxt) resignal timeout
! é dstream$close(ds)
E % The initialization stage:
‘ T$initialize(cxt)
. x := cleanup[T](x)
‘. return(x)

end receive
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constructing the object's external representation. The version is initialized by decoding
the external representation. Unlike composite types, the uninitialized and initialized
versions of an abstract object cannot use the same storage, since the latter is
constructed from the former by a user-defined operation, and the language

implementation has no way of knowing how large the result will be.

Since we cannot pre-allocate storage, every object of abstract type created during
a receive is referred to indirectly through a ufo (unfinished future object). The
representation of a ufo is shown in Figure 15. The meanings of the four states are as
follows: The ufo is in the empty state when it is created. The ufo represents an
uninitialized object version while it is in the wninitialized state, when it contains the
object’s external representation. When the ufo enters the initialized state, the object it
represents has been initialized by decoding the external representation. The in progress
state exists to detect illegal decode operations. A ufo is in this state while the obj'cct it
represents is being constructed. If an attempt is made to access a ufo in this state, then

a cyclic dependency exists and failure is signalled.

In addition, three operations are provided to detect and manipulate uninitialized

object versions:

ufo_mask: proctype [T: type](ufo) returns(T)

Fig. 15. The Representation of a UFQ

ufo = variant{empty: null, % just created
in_progress: null, % being initialized
uninitialized: any, % xrep of represented object
initialized: any % represented object

]
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Creates an uninitialized T object from the given ufo.

ufo_unmask: proctype [T: type](T) returns(ufo)
signals(not_a_ufo)

If argl is represented by a ufo, the underlying ufo is returned. Otherwise,
not_a_ufo is signalled.

ufo_test: proctype [T: type](T) returns(bool)

If argl is represented by a ufo, the result is true. Otherwise, it is [alse.

Lazy decoding is implemented in the following manner. Before the first line of
any T cluster operation is executed, the language implementation tests each argument
of type T to detcrmine whether it is a ufo. If it is, an initialized version of the T object
it represents is extracted, possibly by decoding the object’s external representation. We
call this test the careful prologue of an operation, and we assume it is automatically

performed by the language implementation. A careful prologue is shown in Figure 16.

When receiving a value of type T, The sctup stage is implemented by a T$ger
operation, which is provided to each transmissible type by the language
implementation. Like the put operation, ger is part of the language implementation,
and is not visible to the user. The ger operation for the type T has the following

interface specification:

get: proctype(dcontext) returns(T) signals(timeout)

The ger operation for an abstract type returns an uninitialized version of the object
being decoded. The ger operation for a composite type constructs the composite object
(however, components of abstract type will refer to uninitialized versions). The get

operation for a primitive type constructs the primitive object.
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Fig. 16. The Careful Prologue of a T Cluster Operation )

T = cluster 1is op,

rep =
xrep =

op = proc(arg: T)
% Assign the initialized T object to variable "arg”.

if ufo_test[T](arg) then q ]
u: ufo := ufo_unmask[T](arg) % convert to ufo
] tagcase u
tag empty, in_progress:
signel failure("illegal decode")

tag initialized(a: any):
- arg := force[T](a)

tag uninitialized(a: any):
y: xrep := force{xrep](a)
ufo$change_in_progress(u, nil)
arg := T$decode(y)
ufo$change_initialized(u, arg)
end % tag
end % if

¢
A

% Now execute the user-written code.

end op

end T

To construct a T object when T is primitive, the corresponding data token is
removed from the strecam and used to allocate and initialize storage for the object.

Figure 17 contains the text for int$get.

The get opcrations for abstract and composite types prescrve sharing in the

1
)
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Fig. 17. The Get Operation for the Int Type

get = proc(cxt: dcontext)
returns(int)
signals(timeout)

% Create a token and output it.
tok: token := dstream$extract(cxt.dstream)
resignal timeout
tagcase tok
tag data(dtok: data_token):
tagcase dtok
tag int(ans: iInt): return(ans)
others: signal fajlure("unexpected token type")
end % tagcase
ans: int := data_token$value_int(dtok)
others: signal failure(“"unexpected token type")
end % tagcase
return(ans)

end get

following way. When ger is invoked, the next token in the stream is extracted. If the
token is a back reference token, the object referred to is retrieved from the map, and
get returns. If the token is a header token, ger proceeds differently depending on

whether the type is abstract or composite.

For a composite type, the header token is used to determine the amount of
storage required. The necessary storage is allocated, and a reference to the
uninitialized storage is entered in the map to catch cyclic references by components.
An object created by a lower-level get may refer back to A through the map, but no
attempt will be made to operate on A, as no decode operations are invoked until after
the sctup stage has initialized all of A’s component references. The text for

array[1]$ger is shown in Figure 18.
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Fig. 18. The Get Operation for the Array[T] Type

get = proc(cxt: dcontext)
returns(array[T])
signals(timeout)

array_hdr = record [low, size: int]

% Examine the first token.
tok: token := dstream$extract({cxt.dstream)
resignal timeout

tagcase tok
tag back_ref(addr: stream_addr):
% Object is old, look it up:
return(dmap$lookup[array[T]]{cxt.dmap, addr))

T NI ik s e e e ANRE: et e, W P 3 % AP~

tag header(hdr: header_token):
% Object is new, allocate storage:
ahdr: array_hdr := header_token$value_array_hdr(hdr)
ans: array[T] := array{T]$predict(ahdr.low, ahdr.size)

% Enter the object in the map.
addr: stream_addr := dstream$current(cxt.dstream)
dmapSenter[array[T]](cxt.dmap, addr, ans)

% Get the components.
for i: int in int$from_to(1, ahdr.size) do
array[T]%addh(ans, TSget(cxt))
resignal timeout
ond
return{ans)

others: signal failure("unexpected token")
end X tag

end get

For an abstract type T, an empty wufo representing A is entered in the decoding
map, bound to the strcam address of A’s header token, The uninitialized version of A
is entered in the initialization map. XT$ger is invoked, returning the external
representation (which may itsclf contain uninitialized object versions). The external

representation is placed in the ufo representing A, and the uninitialized version is
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returned. TS$ger is illustrated in Figure 19.

Fig. 19. The Get Operation for an Abstract Type

get = proc(cxt: dcontext)
returns(T)
signals(timeout)

% Examine the first token.
tok: token := dstream$extract(cxt.dstream)
resignal timeout

tagcase tok
tag hack_ref(addr: stream_addr):
% Object is old, ltook it up:
return{dmnap$lookup[T](cxt.dmap, addr))

tag header(hdr: header_token):
% Object is new, create uninitialized version
u: ufo := ufo$make_empty(nil)
ans: T := ufo_mask[T](u)

% Enter the object in the initialization map.
imap$enter[T](cxt.imap, ans)

% Enter the object in the decoding map.
addr: stream_addr := dstream$current(cxt.dstream)
dmapSenter[T]{cxt.dmap, addr, ans)

% Construct the external representation.
y: xrep := xrep$get(cxt) resignal timeout
ufo$change_uninitialized(u, y)
return(ans)

others: signal failure("unexpected token")
end % tag

end get
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3.3.4 The Initialization Stage

At the end of the setup stage, no objects of abstract type have been initialized,
but all objects of composite or primitive type contained in the message have been fully
constructed. In the initialization stage, all uninitialized object versions previously

placed in the decoding context’s initialization map are initialized.

The initialization stage can be viewed as an optimization, since it is not necessary
for correctness to initialize all objects. The lazy decoding scheme guarantees that the
values of abstract objects will be available when needed. Nevertheless, since decode
operations may contain errors or cause side-effects, it is convenient to assure the user

that all decode invocations have completed when the receive statement completes.

Fach transmissible type T is provided with an initialize operation. Like put and
get, initialize operations are provided by the language implementation, and may not be

invoked by users. Initialize operations have the following calling sequence:

initialize: proctype(dcontext)

TSinitialize iterates through the uninitinlized object versions of type T that had
previously been entered in the decoding context's initialization map, as well as
invoking the initialize operations of subsidiary types. The is_initialized operation of
the imap type prevents infinite recursion by detecting the second and subsequent

attempts to initialize objects of a given type.

The initialize opcration for a composite type T simply invokes the initialize
I

operations of its subsidiary types. The text for array[V]$initialize is shown in Figuic 20.

The initialize operation for an abstract type T iterates through the T objects
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Fig. 20. The Initialize Operation for Array[T]

initialize = proc(cxt: dcontext)
% Check that the invocation is new.
it imap$is_initialized[array[T]](cxt. imap)
then return end

% Initialize the subsidiary type.
T$initialize(cxt)

end initialize

entered in the initialization map, extracts the ufo's, and initializes them if they are
uninitialized. When a ufo representing a T object is initialized, T$decode is invoked.
Lazy decoding may cause other object versions to be initialized. TS$initialize is shown

in Figure 21.

The initialize operation for a primitive type returns immediately.

3.3.5 Cleaning Up

At the end of the initialization stage, initialized ufo’s remain in the representation
of the object received. Since we assume (for now) that cvery abstract operation has a
careful prologue, it is not necessary for correctness to remove ufo's. Removing ufo’s
does improve the performance of abstract operations, so it may make sense to remove
them at the end of the initialization stage. For this purpose, we use a cleanup

operation:

cleanup = proctype[T: type](T) returns(T)

Cleanup performs a mark-and-sweep traversal of the machine-level representation of

B e i e S —
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Fig. 21. The Initialize Operation for an Abstract Type T

initialize = proc(cxt: dcontext)

% Check that the invocation is new.
if imap$is_initialized[T](cxt.imap) then return end

% Initialize subsidiary types.
xrep$initialize(cxt)

% Initialize subsidiary objects.
for x: T in imap$elements[T](cxt.imap) do
u: ufo := unmask_ufo[T](x)
tagcase u
tag initialized: % nothing to do

tag uninitialized(a: any):
% Extract external rep object.
y: xrep := force[xrepj}(a)
ufo$change_in_progress(u, nil)
x := T$decode(y)
ufo$change_initialized(u, x)

others: signal failure("illegal decode")
end % tag
end %4 for

end initialize

its argument, replacing references to initialized wfo's by direct references to the

contained objects.

34 An Example

To illustrate how these mechanisms work, we trace how the value of an object
consisting of two simple (and rather uscless) mutually recursive types is transmitted.
An engine object has a serial number and an optional caboose. A caboose object has a

color and an associated engine.
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The external representation of an engine is a record having as components a
serial number of type int, and a oncof which is cither null or contains a caboose. The

cluster we c¢xamine here (Figure 22) uses the same concrete and external

representations.

The external representation of a caboose is a struct, having as components a
{ string denoting the color, and an engine. The concrete representation used by the 1

cluster we examine also contains its engine’s serial number in a cache component

Q : (Figure 23).

- ———

We observe that no operations of abstract type are invoked from the decode

Fig. 22. The Engine Cluster

engine = cluster is create, get_serial,

* train = oneof{empty: null, car: caboose]
' rep = record{rear: train, serial: int]
xrep = rep

get_serial = proc(x: cvt) returns{int)
return(x.serial)
end get_serial

e ear— ———

encode = proc(x: cvt) returns(xrep)
return(x)
and encode

decode = proc(x: T) returns(cvt)
return(x)
end decode

end engine




L ——— s -t ARE T

- e . s r A~ . . o am

g

e ——— ——

Fig. 23. The Caboose Cluster

caboose = cluster 1s create,

n

rep = struct[color: string, front: engine, cache: int]
xrep = struct[color: string, front: engine]

encode = proc(x: cvt) returns(xrep)
return(xrep${color: x.color, front: x.front})
end encode

decode = proc(y: xrep) returns(cvt)
cache_val: int := engine$get_serial(y.front)
return(rep${color: y.color,
front: y.front,
cache: cache_val})
end decode

end caboose

operation of the engine type. The caboose cluster's decode operation invokes an engine
operation; thus, the caboose decode operation uses the value of the associated engine,
From these observations, we conclude that the decodc’s listed above are legal, since the
transitive closure of the "uses the value of™ relation is acyclic. When decoding a linked
engine and caboose, the engine must be decoded before the caboose, since its value is

used to initialize the caboose.

”~
l.et e be a variable bound to an ¢ngine, having scrial number 9, and linked to a

red caboose. Let p be a portengine]. We will trace the effects of exccuting

send e to p.

First, a new cncoding context is initialized. Then a number of pur opcrations are
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invoked. For brevity, when naming operations of composite type we use names like
"record$pur” when the particular record type is clear from context. Each invocation is

listed with its depth from the top of the calling stack.

Level 1: engine$pur checks the map to determine whether the
engine has already been encoded. The engine has not been
entered in the map, so put enters it, and places a header token in
the stream at address 0. Engine$encode is invoked to (trivially)
construct the external representation, then record$pur is invoked
on the result.

l.evel 2: Since record$pur does not find its argument in the map,
a header token is output at stream address 1 to indicate that the
value of a record containing two selectors is starting. The record
object is entered . the map, and the pur operation of the first
component (in lexicographical order) is invoked.

Level 3: After unsuccessfully checking the map, oncof$put
ottputs a header token at address 2 to indicate that the value of
a oneol with a tag valuc of 1 is starting. Put is invoked on the
caboose component.

Level 4 Afier unsuccessfully checking the map, caboose$put
outputs a header token at address 3. caboose$encode constructs
the external representation, then struct$pur is invoked on the
result.

Level 5 After unsuccessfully checking the map, struct$put
outputs a struct header token with two sclectors at stream
address 4, then proceeds to invoke pur on its first component.

Level 6: string$pur outputs a token denoting the string value
"red” at stream address S.

level S: struct$pur invokes pur on its sccond (engine)
component.

e s -~
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Level 6: engine$put finds the engine in the map, with associated
stream address 0. It outputs a back reference to stream address 0
at stream address 6, and returns. Each of the suspended put
operations at levels 5.4, and 3 also return.

o et A o 5 -

Level 2: record$put resumes and invokes int$pur on its second
(serial) component, which places a token denoting the integer
value 9 at stream address 7. All the suspended put opcrations
then return.

e AMEY « i e A R ——

When the highest-level invocation of engine$pur returns, the stream is closed, and the

‘, E send statement terminates.

!

; t
2 ‘ To complete the example, we trace the effects of executing: )
! }
‘ receive e on p.

First a decoding context is initialized. In the setip stage, the values of built-in type are £

% constructed.

Fig. 24. Tokens Produced by Sending Engine Value

Stream Address Token Type Token Information
0 header abstract value
1 header record with two selectors
2 header oncof with tag value 1
t 3 header abstract value
4 header struct with two selectors
5 data string value "red”
; 6 back reference strcam address 0
7 data int value 9
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Level 1: engine$ger extracts the first token, and determines that
it is a hcader token. An empty ufo is entered in the encoding
map, bound to strecam address 0, and in the initialization map.
record$ger is invoked to construct the external representation.

Level 2: record$ger extracts the next token, and dctermines that
it is a header token. Storage for a record having two selectors is
allocated. The uninitialized record is entered in the map, bound
to stream address 1, and the ger operation of the first component
is invoked.

Level 3: oneof$ger extracts the next token, and determines that it
is a header token with tag value 1. Storage for a oneof is
allocated. The uninitialized oneof is entered in the map, bound
to stream address 2, and ge is invoked on the component.

Level 4: caboose$ger extracts the next token, and determines
that it is a header token. An empty ufo is entered in the
decoding map, bound to strcam address 3, and in the
initialization map. struct$ger is then invoked to construct the
external representation.

Level 5: struct$ger extracts the next token, and determines that
it is a header token. Storage for a struct having two sclectors is
allocated. The uninitialized struct is entered in the map, bound
to stream address 4, and the ger operation of the first component
is invoked.

Level 6: string$ger constructs a string having the value "red"
from the token at stream address $.

Level 5: struct$ger resumes, storcs the value "red” in its first
component, and invokes gef on its second component.

Level 6: engine$ger extracts the next token, and determines that
it is a back reference to stream address 0. The cmpty ufo
representing the engine is extracted from the map, and returned.
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Level 5: after storing the ufo in its second component, struct$get
returns.

Level 4: caboose$ger resumes execution. It changes its ufo to the
uninitialized state by binding it to the external rcpresentation
returned from the lower level. This uninitialized object version
is returned.

Level 3: after storing its component ufo, oneof$ger returns.

Level 2: record$ger resumes exccution, storing the oncof in its
first component, and invoking ger on its second component.

Leve! 3: int$ger constructs an int having the value 9 from the
token at strcam address 5.

Level 2: record$ger storcs the value 9 in its second component,
and returns. Engine$ger then returns.

All the values of primitive and composite type sent in the message have been
constructed. The result of the setup stage is shown schematically in Figure 25.
In the initialization stage all the ufo’s created in the setup stage are initialized.

Level 1: engineSinitialize invokes record$initialize.

Level 2: record$initialize invokes the initialize operation of its

first component.
Level 3: oncof$initialize invokes the initialize operations of its f
component  types.  wull$initialize returns  immediately.

Caboosc$initialize is then invoked.

Level 4: cabooseS$initialize invokes struct$initialize.
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Fig. 25. The Results of the Setup Stage
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Level 5: structSinitialize invokes initialize on its first (color)
component. string$initialize returns immediately.
EngineSinitialize is then invoked.

Level 6: when engineSinitialize invokes imap$is_initialized, it
returns true, so enginc$initialize returns,

Level 5: struct$ger returns,

Level 4: caboosc$initialize resumes exccution and invokes
imap$ciementsfcaboose], which yiclds the /o created at level 4
during the sctup stage. ‘The wfo is found to be uninitialized, so
the external representation is extracted, and caboose$decode is
applied to it.
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Level 5: caboose$decode invokes engine$get_serial.

Level 6: the careful prologue of enginc$get_serial determines
that the engine argument refers to a ufo. The state of the ufo is
tested and found to be uninitialized. Engine$decode is invoked
to initialize the engine. (This is an example of lazy decoding.)

1 Level 7: engine$decode returns without invoking any operations ;
of abstract type. \

Level 6: engine$get_serial returns the integer 9.

: A
Level 5: caboose$decode resumes, returning a caboose. -

Level 4: caboose$initialize returns, having initialized all 9

uninitialized cabooses. 4

0

Level 3; oncofSinitialize returns.

Level 2: record$initialize resumes execution. It invokes »
int$initialize on its second (serial) component, which returns '
immediately. record$initialize returns.

Level 1: engine$initialize resumes execution and invokes
imap$elements[engine], which yields the ufo created at level 1
during the setup stage. The ufo is found to have been initialized
(at level 6 above), so engincS$initialize returns.

After engine$initialize returns, cleanup traverses the object and removes the initialized

ufo's from the representation. The result of receiving the message is to construct a

linked engine and caboose, having the same values as the originals. The result is shown

schematically in Figure 26.
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Fig. 26. The Results of the Initialization Stage
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Refinements and Optimizations

This chapter describes refinements to the implementation design presented in the
previous chapter. We identify a number of common situations that do not require the
full generality of the mechanisms we have introduced. For each situation, we explain

how to recognize it when it occurs, and how to take advantage of it.

4.1 Overview

To help describe these refinements, we divide value transmission into two parts:
value translation and message construction. Value translation is the task of translating
between values of abstract type and values of built-in type. To transmit an abstract
value, it is necessary to encode it into values of built-in type, since the lowest-level
language implementation can only transmit built-in values. When sending a message,
abstract values are reduced to built-in values through successive application of encode
opcrations. When receiving a message, abstract values are constructed from built-in
values through successive application of decode operations. In this chapter we address

how to optimize the translation task.

The second task comprises the construction and transmission of messages
containing values of built-in type. The mechanisms described in the previous chapter
are designed to transmit values in a way that assumes as little as possible about the
implementations of built-in types used at the communicating guardians. In an actual
implementation, we may expect that some common patterns of communication will not
require the full generality of the mechanisms we have described. In particular, when
the sender and receiver reside on the same machine we may take advantage of the fact

that both sides of the exchange may share memory, and may use the same
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implementations of built-in types.

Two preliminary definitions are in order: a module is the unit of compilation, and

binding is the process of combining separately compiled modules to form a program.
4.2 Translating Between Abstract and Built-in Values

The greatest apparent threat to efficiency in the translation task is the lazy
decoding mechanism introduced in the previous chapter. We recall that lazy decoding
requires that each operation of abstract type execute a carcful prologue to test whether

certain arguments are uninitialized. Although we can make testing itself quite efficient,

we would like to reduce its frequency.

There are two complementary approaches to reducing the expense associated
with lazy decoding. The first approach is to distinguish between those operation
invocations that may encounter uninitialized object versions, and those that cannot.
Uninitialized object versions can exist only while a message is being decoded. If we
make the plausible assumption that most invocations of cluster operations occur while
a receive is not in progress, then it becomes attractive to distinguish between
invocations that may need to perform careful prologues, and those that do not. We
present a scheme that restricts the execution of careful prologues to invocations of

cluster operations that occur in the course of message decoding.

A second approach is to identify data types whose implementations do not need
lazy decoding. For example, we recall that lazy decoding was introduced to permit the
use of self-referential external representations to transmit values of cyclic objects.
Realistically, we expect that only a minority of types include cyclic objects, suggesting

that methods for statically recognizing types that only include acyclic objects may be
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profitable. We present two schemes for recognizing that a given cluster does not

require lazy decoding.

; 4.2.1 Restricting the Use of Careful Prologues

In this section, we discuss how to structure cluster operations to exccute careful
prologues only while a receive is in progress. We recall that uninitialized object
versions are implemented by addiry a level of indirection to object references. This
level of indirection goes through an object we have called a ufo. When an operation of
type T is invoked, it must check whether any of its T arguments is referred to

indirectly, and if so, it must extract a direct reference from the intermediate ufo. We

can increase the overall efficiency of abstract opcrations by ensuring that indirect

A . . . L L

references can exist only while a receive is in progress, and by executing careful

rologues on'y at that time.
p

We divide modules into two classes: careful modules, which arc prepared to
encounter ufo’s in object representations, and normal modules, which are not. Only

careful modules are allowed to execute when decoding a value. Afier the value is fully

decoded, all indirect references through ufo's are replaced by direct references. By
having the binder create two versions of those modules that can be invoked both when
a receive is in progress, and when one is not, we may avoid the expense of executing
unneeded careful prologues, at the expense of the storage required for the extra

| module version.

The cleanup operation, previously introduced as an optimization, is necessary to
ensure the safety of this scheme. Since normal modules do not expect to encounter

indirect references, all ufo’s must be removed from the constructed object before any
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normal modules resume execution.

The compiler only needs to produce one version of the object code for a module;
differentiation of normal and careful versions may be done by the binder. We assume
that the binder is aware of the interface specifications of cluster operations through the
Library. In particular, the binder can determine which arguments to cach T operation
are T objects. If, by binding time, it has been decided that lazy decoding is necessary
for a given T cluster, the binder can “enclose” the careful versions of cluster operations
with dummy procedures that test and conditionally initialize T arguments before

invoking the actual operation,
When joining modules, the binder follows these rules:

Careful modules are bound to careful modules, and normal
modules are bound to normal modules.

All decode operations are careful.

When the same procedure is invoked from both careful and normal modules, the
binder makes two copies of the procedure, placing a carcful prologue in the careful

version, if required.

In summary, we have shown how to limit the run-time penalty for lazy decoding
to invocations that occur while a value is being decoded, at the cost of using more
storage. This scheme requires only simple changes to the binder, which must

distinguish between careful and normal modules.

s
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4.2.2 Information About Abstractions and Implementations

In the remainder of this section, we discuss ways to detect that the objects
managed by a given cluster can be decoded without creating uninitialized object
versions. Our basic strategy is to collect information both about data abstractions and
the modules implementing those abstractions, in order to establish that sufficient
conditions exist to eliminate lazy decoding. We remove the need for careful prologues
in cluster operations by substituting different put, ger, and initialize operations from

those described in the previous chapter.

There are two kinds of information that will prove uscful.  Specification
information about a module concerns the abstraction it implements. Specification
information includes such items as the names and argument types of procedures, and
the external representation used by a data type.  Implementation information concerns
the way that a module implements an abstraction.  Implementation information
includes details such as a cluster’s concrete representation, or the source code for a

procedure.

We may also classify information by the ways it can be acquired. Compile-time
information about a module is information that can be collected during or after the
compilaiion of the module. Such information can be derived from implementation
information about the particutar module being compiled, along with specification
information about the modules it uses.  Binding-time information  concerns
implementation information about more than one module. Such information cannot

be acquired until it is known which implementations are being bound together.

Information about modules and abstractions s managed by the Library. The
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CLU Library {Liskov 79} contains the interface specifications of abstractions needed to
type-check inter-module references. The Library for a CLU extension incorporating
the communication primitives developed here would contain the external
representations of transmissible data abstractions, since the external representation is
the interface between distinct clusters implementing the same abstraction. The Library
also maintains information about individual implementations. We assume that both

the compiler and the binder can access and update information in the Library.

4.2.3 Eliminating Abstract Value lleaders

In this section we show how to lower the number of tokens transmitted, at the
cost of slightly complicating the control structure of the get operations. In itself, this
reduction is not very important; however it permits us to optimize the case, discussed

below, where the encode and decode operations of a type perform no actual work.

In the implementation presented in the previous chapter, the start of an encodeu
abstract value within a message strcam is marked by a header token. In fact, the
information conveyed by this kind of header token is redundant, since the type of a

message 1s known in advance from the type of the port.

The optimized ger oper ‘on acts in the following way. Let T be an abstract type
having external representation type XT. When T$pur encounters an object that has not
previously been encoded, it invokes XT$pur without placing a header token in the

stream,

At the receiving guardian, care must be taken when a back reference token is
cneountered, since an encoded abstract value now starts at the same stream address as

- oncoded value of its external representation, and it is necessary to determine which
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value is indicated. Accordingly, when T$ger is invoked, it examines the next token in
the stream without removing it. 1f the token is not a back reference, XT$ger is invoked.
If it is a back reference, the decoding map is checked to ascertain whether a T object
has been entered with the given stream address. If such an object is found, the token is
removed from the stream, and the object is extracted from the map and returned. If no
associated T object is found, then one must be constructed, so T$ger invokes XT$ger,

leaving the back reference token in the stream. T$ger is shown in Figure 27.

To illustrate how this scheme differs from the previous one, let us compare how
the two schemes would transmit a given value. Let A be an object of abstract type T,
having the same object R as concrete and external representation. For the purposes of
this example, let R be an array[int] with a single clement. We suppose that A has an
"exposed representation”, that is, its concrete representation may be accessed and
manipulated by programs other than T cluster operations. Let us transmit the value of

a struct containing both A and R.

The tokens produced by the unoptimized scheme appear in Figure 28. At the
sending guardian, struct$pus outputs a header token at stream address 0, and invokes
array[int]$put, which outputs the tokens at stream addresses 1 and 2. Struct$pur then
invokes T$put. T$put does not find A in the map, so it outputs a header token at
stream address 3, and invokes array[int}$pur. Array[int)$pur finds R in the map, and
inserts a back reference to stream address 1 at stream address 4. At the recciving
guardian, array[int)$ger constructs an object R* from the encoded value of R, and places
R’ in the decoding map. T$ger extracts the next token from stream address 3, discovers
it is a header token, and invokes array[int]$ger. Array[int]$ger discovers that the next

token is a back reference, and returns R* from the map.

L3E e
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Fig. 27. The Get Operation Without Abstract 1eader Tokens

get = proc{cxt: dcontext, time: timeout)
returns(T)
signals(timeout)

% Peek at first token.
tok: token := dstream$peek(cxt.stream)
resignal timeout
if tokenS$is_back_ref(tok) then
addr: stream_addr := token$value_back_ref(tok)
if dmap$seen[T](cxt.dmap, addr) then
% Object is old, remove token and look it up.
dstream$extract(cxt.dstream)
return(dmap$lookup[T](cxt.dmap, addr))
end % if
end % if

% Object is new, create uninitialized version.
u: ufo := ufoSmake_empty(nil)
ans: T := ufo_mask[T](u)

% Enter the object in the initialization map.
imap$enter[T](cxt.imap, ans)

% Enter the object in the decoding map.
addr: stream_addr := dstream$current(cxt.stream)
dmap$enter[T](cxt.dmap, addr, ans)

% Construct the external representation.
y: xrep := xrep$get(cxt, time)

resignal timeout
ufoS$change_uninitialized(u, y)
return(ans)

end get

The tokens produced by the optimized scheme appear in Figure 29. At the
sending guardian, the only difference between the two schemes is that instead of
placing a hcader token in the stream, T$pur immediately invokes array[int]$pur. At the
receiving guardian, when T$ger pecks at the token at stream address 3, it discovers the

token is a back reference to steam address 1. When T$ger looks up the strcam address
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% Fig. 28. Tokens Produced With Abstract [Headers Q
!

I Stream Address Token Type Token Information ‘
{ !
; 0 header struct with two sclectors i
) 1 header array with one element

-z 2 data int value

i ] header abstract T value

i 4 back reference stream address 1 ‘
|

in the decoding map, it does not find an associated T object, so it invokes

arraylint]$ger. The latter proceeds as before.
4.2.4 Assumptions

To eliminate the need for carcful prologucs in the operations of an abstract type

T, T objects must be decoded before they are referred to by other objects. This implies

that values are decoded in an order such that all values used by T$decode are available

when it is invoked. In the previous chapter, lazy decoding ensured this property by

determining a legal order at run-time. For most types, a legal order can be determined

statically, climinating the need for lazy decoding and for careful prologues.

Fig. 29. Tokens Produced Without Abstract Headers

Strcam Address Token Type Token Information

0 header struct with two sclectors
1 header array with one element
2 data int value

R} back reference strcam address 1
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?

We divide implementations of data abstractions into two classes: well-behaved
clusters are those whose objects may be completely decoded before being referred to;

the unpredictable clusters are those for which run-time lazy decoding is required. The

implementation described in the previous chapter protects objects of built-in type from

- — s MM e I PN

premature access by decoding them before objects of abstract type. Similarly, the
implementation devcloped in this chapter decodes values in two passes: values of

built-in type and well-behaved abstract type are both decoded in the first pass, and

e ot s eE TR

; values of unpredictable abstract type are decoded in the second pass.
4.2.5 Trivial Encode and Decode Operations

: ‘ Clusters whose encode and decode operations perform type conversions on their
arguments, but no other operations, form the simplest class of weli-behaved clusters.

We call such operations (rivial encode’s and decode’s. When a type T has trivial encede

and decode operations, the task of translating a T value into built-in values is
simplified. If all the encode or decode operations invoked in the course of encoding or

decoding a T value are trivial, then the translation task for T values is itself trivial, as it

£
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suffices to transmit the underlying representation of a T object as a built-in object.

[fT is a type having trivial encode and decode operations, then there is no need to
use lazy decoding for T values; furthermore, there is no need for the pur and get
operations to check for sharing. Normally, when put encounters a T object whose
value has alrcady been encoded in the current message context, it inserts a back
reference token indicating the strcam address where the encoded T value starts.
Suppose T has a trivial encode, and that T$put invokes xeep$put without checking the

encoding map. If xrep$put discovers that the xrep value has already been encoded. it

inserts a back reference to the start of that encoded value. Since we have climinated

lav
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abstract header tokens, the stream address of the encoded xrep value is the same as the
stream address of the encoded T value, so it suffices to have the lower level put place

the token in the stream.

An analogous argument suffices to show that T$ger does not need to check for
sharing, since any sharing that exists will be detected at a lower level. Furthermore,
there is no need to create an uninitialized version of the T object, since the uninitialized
version of its external representation will do as well. Finally, since no uninitialized
versions of T objects are created, T$initialize does not nced to iterate through the
initialization map. In summary, the put, get, and initialize operations for T can be
reduced to simple invocations of the put, ger and initialize operations of T's external

representation.

The compiler can easily detect trivial encode and decode operations. As a further
optimization, the binder could replace the invocations of the trivial T$put, T$ger, and
TSinitialize operations by direct invocations of the xrep$put, xrep$ger, and

xrep$initialize operations, eliminating levels of procedure linkage.
4.2.6 The External Type Closure

A second way to eliminate the need for lazy decoding is to recognize types that
cannot have self-referential external representations. In this scction we describe a
fairly simple way to recognize statically that no objects of a type will require lazy

decoding or uninitialized versions.

Let T and S be types. We define the ET (external type) relation among types in

the following way:

1
|

-




If T is a primitive type, then there is no type S such that (T,
S)€ ET.

If T is a composite type, then (T, S) € £T if and only if S is a
component type of T.

If T is an abstract type, then (T, S) € ET if and only if S is T's
external representation type

We use ET(T) to denote the set of types S such that (T, S) € ET. For example,

ET(string) = @
ET(oncoflitem: T, empty: null)) = {T, null}.

Il setfT] is a parameterized, abstract type having as external representation type

sequence[T], then:

ET(sctfint]) = {sequence[int}}.

The ETC (external 1ype closure) relation among types is defined to be the
transitive closure of ET. Intuitively, ETC(T) is the set of types whose values will be
included in a message containing a T value. The external type closure is similar to the

concept of type closure found in [Atkinson 76}.

ETC(string) = 2
ETC(oneoflitem: T, empty: null]) = {T, null} U ETC(T)
ETC(set[int]) = {scquence[int], int}.

Before discussing the use of the external type closure, et us introduce some
convenient terminology. For an abstract type T, we state that T is recursively defined if
it belongs to its own external type closure. For cxample, we recall the int_list type

introduced in Chapter Two, whose external representation is defined by:

xrep = record[car: int, cdr: 1ink]
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link = oneof [next: int_list, empty: null].

It is easy to verify that:
ETC(int_list) = {int, int_list, link, null, xrep},

where xrep and link are abbreviations for the record and oneof types. Since int_list is a

member of its own external type closure, it is recussively defined.

We say that a procedure P directly calls procedure Q if the text of P contains an
invocation of Q. We say that P calls Q if Q is in the transitive closure of P's "directly

calls” relation.1

The basic claim we make in this scction is that if a type is not recursively defined,
then it does not require lazy decoding. It is possible to optimize the task of decoding
values of such types in the following way. T$ger may immediately decode a T object’s
external representation, as shown in Figure 30, rather than using a ufo to create an

uninitialized object version. We will refer to this operation as the simple get.

Our argument that the simple ger may be used for types that are not recursively
defined takes the following form. To show that the simple get is safe for
non-recursively defined types, we show that if the simple T$ger attempts to use a value

prematurely, then T must be recursively defined. This argument is presented in three

steps:

1. The "calls" and "directly calls” relations are static: when we say that P calls Q, we
do not mean that cach invocation of P will cause an invocation of Q. For example,
although the ger operation for a oncof calls the ger operations of all its component
types, only one component get will actually be invoked by the oneof's get.
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Fig. 30. The Get Operation for a Non-Recursive Type

get = proc(cxt: dcontext)
returns(T)
signals(timeout)

% Peek at first token.
tok: token := dstream$peek(cxt.stream) resignal timeout
if token$is_back_ref(tok) then
addr: stream_addr := token$value_back_ref(tok)
if dmap$seen[T](cxt.dmap, addr) then
% Object is old, remove token and look it up.
dstream$extract(cxt.dstream)
return{dmap$lookup[T](cxt.dmap, addr))
end % if
end % if

% Object is new, remember steam address and decode xrep.
addr: stream_addr := dstream$current(cxt.stream)

% Construct and decode the external representation.
y: xrep := xrep¥get(cxt) resignal timeout

x: T := T$decode(y)

dmap$enter{T](cxt.dmap, addr, x)

return(x)

end get

Claim One: if T$get invokes T$decode, and the latter attempts to
use the value of an S object, then S € ETC(T).

Claim Two: if T$ger invokes T$decode, and the latter fails when
trying to usc the value of an S object, then T € ETC(S).

Claim Three: if S € ETC(T), and T € ETC(S), then T € ETC(T).

To establish the first claim, we observe that for an S object to be accessible from
T$decode, S$get must have been invoked by T$ger, implying that T$ger calls S$ger. By
inspecting the code for the ger operations, one can sec that TSger directly calls S$get if

and only if S € £T(T). 1t follows that T$ger calls S$ger if and only if S € ETC(T).
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To establish the sccond claim, we observe that an attempt to use the value of an
uninitialized S object can fail only while the first S$ger operation constructing it has
been invoked but has not yet completed, for only then is the ufo representing the S
object in the empiy state. If T$decode can access an S object, then T$ger must have

been invoked by S$ger, thus T € ETC(S).

We may illustrate this last point by recalling the cyclic engine and caboose types
used as an example in Chapter Three. In that example, we traced in detail how an
engine-caboose pair is decoded. Let us replace the usual caboose$ger operation by a
simple ger operation, and briefly retrace the steps in the example. All goes well until
the simple caboose$ger invokes caboose$decode. The latter invokes engine$get_serial,
which fails because the ufo representing the engine is in the empiy state, since the
engine$ger operation constructing the engine object has been invoked, but has not yet

terminated.
To cstablish the third claim, we make use of the fact that for all types T,and Ty
T, € ETC(T) = ET((T)) € ET(T,)

which follows directly from the definition of the E7C relation as a transitive closure,

Therefore:
SELETC(Myand T € ETC(S) = T € ETC(T).

Having established that S € ETC(T) (Claim 1), and T¢€ ETC(S) (Claim 2), we

therefore have T € ETC(T), demonstrating that T is recursively defined.

As a final remark on the simple T$ger operation, we note that when decodinga T
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object A, it is not necessary to enter an uninitialized version of A in the decoding map
before A's external representation is constructed. In the general case, an uninitialized
version is placed in the map to catch cycles of reference. However no such cycles can
exist when T is not recursively defined, for otherwise T$ger calls T$ger, and

T € ETC(T).

The external type closure of a type T may be computed statically. By definition,
external representations, unlike concrete representations, are the same at every
guardian. Since the external type closure of a type T is defined entirely in terms of
external representations, it is the same for all T implementations. Furthermore, we
may assume that external representations are changed rarely, if at all, since changing a
type's external representation requires modifying every implementation of that type in

the system. This implies that once ETC(T) is computed, it is unlikely to change.

Since the external representation used by a type is known to the Library, it is a
simple matter to compute the external type closure once the requisite specification
information has been collected. The external type closure of an abstract type T should

be part of the specification information about T maintained by the Library.

The cluster-dependent optimizations just described may interact with the
distinction between careful and normal modules in the following way. If the compiler
recognizes that a particular cluster is well-behaved, cither because it has trivial encode
and decode opcrations, or because it is not recursively defined, then it informs the
Library of that fact. When the binder constructs a program . it extracts information
about cach module being bound from the Library. The binder does not need to insert
carcful prologues in the careful versions of operations of well-behaved clusters.

Moreover, it is casy to detect the special case in which every module implementing a
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type in ETC(T) is well-behaved, meaning that there is no need to use separate copies to

distinguish between normal and carcful versions of those modules.
4.2.7 The Function of the Binder

The pur and ger operations of an abstract type T can be constructed by the
binder, since the only type-dependent aspect of pur or ger is the choice of external

representation type.

Only the binder can determine whether an instantiation of an abstract type
parameterized by type is recursively defined, since the parameterized type's external
type closure cannot be determined without knowledge of the instantinoted parameter
type. For example, the set[T] abstraction described above has the following external

type closure:
ETC(set[T]) = {sequence[T], T} U ETC(T).

Thus, set[T] is recursively defined for all and only those types T such that set[T] is a
member of E7C(T). For cach instantiation, the binder can decide which put and get to
use, and whether carcful prologues are required. Like any other type, a parameterized

tvpe having trivial encode and decode operations does not require lazy decoding,

When binding the careful version of a T cluster, the binder decides whether to
place careful prologues in the cluster operations, and which of the three kinds of get
operations to use for T, The binder first cheeks whether T has trivial encode and
decode operations, I so, invocations of T$ger may be replaced by invocations of the
get operation of T's external representation. I the encode and decode operations are

non-trivial, the binder then checks whether T ois recursively defined, using type
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information in the Library, and information about instantiated type paramecters. 1f T is
not recursively defined, it can be given the simple ger operation that directly invokes
T8decode on the external representation. If cither optimization applies, the careful
versions of the T cluster operations are bound without careful prologues. If the T
cluster has a non-trivial decode, and if T is recursively defined, then the general get
operation must be used, and the binder must place careful prologues in the operations

of the T cluster.

To make these decisions, the binder requires two kinds of information from the
Library. To determine whether an abstract T is recursively defined, the library must
maintain T's external representation type, and T's external type closure. The Library

must also keep track of which T clusters have trivial encode and decode opcerations.

4.2.8 Optimizing The Initialization Stage

The initialization stage is another part of the translation task that can be
optimized. One refinement suggests itself immediately: if the initialization map is
empty at the end of the setup stage, there is no need to initialize object versions, or to
remove ufo's. It is only necessary to incur the expense of initialization and clean-up

when uninitialized versions have actually been created.

We can also determine at binding-time that objects of a given type cannot
contain ufo’'s, requiring no initialization stage or cleanup traversal. If every type in a
type T's external type closure is implemented by a well-behaved cluster, then there will
be no ufo's to initialize or remove., I ETCCT) contains no recursively defined types, the

condition can be ¢stablished statically from specification information in the Library. If

LTC(T) does contain recursively defined types, then when particular implementations
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of those types are chosen at binding-time, the binder can check whether those types
have trivial decode operations. If we can determine, either statically or at binding-time,
that objects of type T cannot contain ufo's, then TS$initialize can be teplaced by a

dummy procedure that simply returns.
4.3 Constructing and Transmitting Messages

In the previous section, we discussed ways to optimize the translation between
abstract and built-in values that takes place both before and after the actual message
transmission. In this section we discuss ways to optimize the construction and
transmission of messages containing the built-in values. We are primarily interested in

reducing the amount of storage required to send and receive messages.

When transmitting a very large message, we may reduce the amount of storage
needed for buffering by transmitting information before the message is completely
constructed. In the scheme described in the previous chapter, the tokens placed in an
encoding stream comprise the transmitted message. Tokens are placed in the encoding
stream us the object referred to by the send statement is traversed. The encoding
stream abstraction has the property that a token can be transmitted any time after it has
been inserted in the stream. The encoding stream cluster could be implemented to
transmit the tokens as soon as a certain number have accumulated, perhaps
asynchronously. Encoding streams allow storage use 10 be economized by interleaving
value translation and message transmission. A disadvantage of this interleaving is that
the receiver has no way to determine the size of a message before it is completely

received.

In the special case where the communicating guardians reside on the same
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machine, use the same language implementation, and where the implementation
permits shared memory, message transmission can be accomplished quite easily. As we
have stated’ before, the messages that are actually constructed and transmitted by the
language implementation contain only values of built-in type. In the genera! case, a
guardian wishing to transmit an integer value would encode that value into an integer
data token. The receiver would then construct a new integer object from the reccived
token. In the local case, the sender can just copy the integer directly into the receiver’s
address space, since both use the same representation for integers. Similarly, a
guardian wishing to transmit the value of an array[int] could just copy the array into
the receiver’s address space. This scheme benefits both guardians: the sender may
economize storage use, since it is not necessary to construct a message stream, and the
receiver may economize processing, since it begins with a fully constructed

representation object, instead of a stream of tokens that must be deciphered.

Now suppose the sender wishes to send a set[int], where set[T] is a parameterized
abstract type having sequence[T] as its external representation. The sender can apply
encode to the setfint], deriving a scquence]int]. The sequence can now be copied
directly into the receiver’s address spacé. where decode can be applied to construct a

set[int] object.

Finally, suppose the sender wishes to send a set[set[int]]. The first application of
encode teturns a sequencefsctfint]]. The next step is to create a new sequence by
replacing each element with its external representation, deriving a
sequencef[sequencefint]]. Since this is an object of built-in type, it can be copied into

the receiver’s address space. By successive applications of decode operations, a copy of

the original object is then reconstructed by the receiver.




-95-

These examples suggest how local message transmission can be optimized. The
value of an object of built-in type is transmitted simply by copying that object into the
receiver's address space. If the object is not of built-in type, it is reduced to built-in
type by successively replacing abstract objects by their external representations, until
no abstract objects remain. The resulting built-in object is then copied. The decoding
process is the reverse of the encoding process; external representations are replaced by
the abstract objects they represent. The remainder of this section describes the

construction and interpretation of message objects in more detail.

E » We define the message represcntation 1ype of a type T, denoted by MR(T), in the
1

following way.

If T is primitive, MR(T) = T.

If T is composite, then cach component type is replaced by its
message representation type, ¢.g. MR(array[S]) = array[MR(S)}.

If T is abstract, having external representation type XT, MR(T)
= MR(XT).

We introduce local_put and local_get operations to construct message representations
for objects. Since most of the structure of local_put and local_get operations is

identical to the corresponding pur and get operations, we will not describe them in

great detail.

The local_put and local_get operations have the following interface

.
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local_put: proctype(T, map) returns(any)
local_get: proctype(any. map) returns(T)

For a type T, T$local_put accepts a T object as an argument, and returns an object of
type MR(T), encoding the value of that argument. T$/ocal_ger accepts an object of

type MR(T) as an argument, and returns a T object constructed from that argument.

All local_put and local_get operations check for sharing in the usual way. Map
types similar to those used in the general scheme serve to detect sharing. Where the
maps in the general scheme use stream addresses to refer to the encoded values of

objects, the maps in the local scheme use standard object references.

The local_put and local_get operations for primitive types simply copy their
arguments into the receiver's address space. The local_put opceration for array[T)
constructs an array{MR(T)] in the receiver’s address space, where the latter object is
constructed by replacing cach array[T] element with the result of its local_put
operation. The local_get operation constructs a new array[T] by replacing each
element in the received array[MR(T)] with the results of its local_get operation. The

local_put and local_get operations of the other composite types behave analogously.

The local_put for an abstract type returns the result of applying xrep$/ocal_put to
the argument's external representation. The local_ger operation invokes xrep$/ocal_get

on its message argument.

If every type in the external type closure of a type T has a trivial decode, then the

underlying represcntation of the T object is the MR(T) object, and there is no need to

perform any translation.




Conclusions

In this chapter we evaluate our results, suggest some extensions, and list some

areas for future research.

5.1 Summary and Evaluation

The scheme developed in this thesis is motivated by the claim that value
transmission for programmer-defined types should be under the control of the
programmer. As evidence for this claim, the introduction deséﬁbes a number of
situations in which the representations of values used within a guardian are

inappropriate for communicating those values between guardians. j-

We propose the external representation scheme as a means for defining ﬂ
transmission. To evaluate the merits of this scheme, let us review the goals set forth in

Chapter Two, and examine how we have met them. H

Our first goal was to permit communicating guardians to use different
implementations for a common data type, without causing a combinatorial growth in 31

complexity as new implementations arc developed. The external representation

scheme accomplishes this goal by serving as an information-hiding mechanism. Since

' . . . .
‘» all guardians communicate by encoding information in a common external

I v representation, no guardian depends on another'’s concrete representation, and the

N A introduction of a new implementation is indistinguishable from duplication of an old

|‘ A

: implementation. ‘

.

‘ § : The ease of implementing and using a particular data type depends to a certain

extent on the simplicity of its specification. We feel that the external representation
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scheme proyides a simple way to spcqify the meaning of transmission for a type. The
specification for a programmer defined type T has two parts. The first step is to choose
an external_ representation type XT, for which transmission is defined. The second step
is to define abstract encoding and decoding operations, which translate between values
of T and values of XT. Transmission is defined for T by the triple composition of the
encoding operation, the previously defined transmission operation for XT, and the

decoding operation.

Since the correctness of a type's implementation depends on correctly
implementing the translation operations, the programs that perform the translation
should be easy to locate and verify. The programmer implementing a transmissible
type must provide encode and decode operations to translate between concrete and
external representations. The input-output behavior of the encode and decode
operations completely characterizes the translation process. To verify that transmission

is implemented correctly, it suffices to verify the encode and decode operations.

The responsibility for message construction and interpretation is given to the

language implementation, facilitating the task of the programmer.

Although the scheme can be used without mechanisms to preserve sharing
structure and to transmit values of cyclic objects, we feel that the availability of such
mechanisms is a major strength of our scheme. Later in this chapter we will compare

our scheme to a simpler one that does not provide this kind of support.

Finally, we require that our scheme be acceptably efficient. Rather than attempt
to define "acceptably cfficient,” let us examine the areas where efficiency may be an




The first efficiency question we address concerns the expected complexity of the
user-defined translation operations. We may assume that programmers will attempt to
make the operations as efficient as possible. In particular, it seems reasonable to
suppose that many transmissible types will be implemented having identical concrete

and external representations, requiring trivial translation operations.

{
The sharing preservation mechanisms increase the amount of work to be done,
since objects must be entered into and retrieved from maps. On the current CLU
implementation, it is possible to compare object identity through a simple pointer ﬂ

comparison, meaning that standard hashing techniques can be used to make the map

types quite efficient.

The mechanisms used to facilitate transmission of values of cyclic objects
introduce a potential source of inefficiency in the form of an extra level of indirection
in certain object references. This inefficiency can be reduced through a number of
optimizations described in Chapter Four. A straightforward optimization permits us to
restrict the run-time expense of using indirect references to certain procedure
invocations, at a cost in storage. Slightly more complicated optimizations permit us to

eliminate indirect references entirely for certain types, through the maintenance of

relevant information in a library accessible both to the compiler and the binder.

Finally, there are several special cases that we expect to be common enough to
iy optimize specially. By recognizing clusters using the same concrete and external
representations, it is possible to make message construction and interpretation more

efficient. When all the translation operations used to construct a message are trivial in

7 X S g .

this way, the expense of constructing or interpreting a message is comparable to

copying the object whose value is being transmitted. When communicating guardians
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reside on the same node, it is possible to reduce the work associated with message
transmission to a significant degree by taking advantage of shared memory, as we

discuss in Chapter Four.
5.2 Transmitting Untyped Objects

Our scheme may be extended to permit guardians to receive messages without
decoding the contained values. For example, a file server guardian may provide
reliable storage for information belonging to other guardians, without regard for the
content of the information. In particular, it should be possible to store and retrieve the
value of an abstract T object using such a server, even if the T type is not supported at
the server’s guardian. To provide this capability, we introduce an image type. An
image object may be viewed as an undecoded message containing value of
transmissible type. An image is constructed from a transmissible object using the same
value encoding mechanism used to construct messages. The value decoding
mechanism is used to reconstruct a copy of the object originally used to construct the

image. Images are immutable and transmissible, and have the following operations.
encode_value: proctype[T: type](T) returns(image)
Encodes the value of arg/ into the result.

decode_value: proctype[T: type](image) returns(T)
signals(wrong_type)

Returns an object constructed from argl.

Let A be an object of type T. The relation of images to transmission mechanisms can
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be summarized as follows:

image$decode_value['T’](image$encdde_value[T‘](A)) = TS$1ransmifA,
message_context$create())

Images resemble CLU any’s, in that they are useful for managing objects
independently of their types. However, there are several important differences
between any’s and images. First of all, "any” describes the behavior of variables, not
objects. Unlike image, any is not really an object type. Secondly, images are
transmissible, while any does not have a transmit operation. Finally, there is no sharing
between an image, and any other object. An object, an image created from it, and an
object created from the image are all disjoint. By contrast, when an object is assigned
to an any, and when that any is forced, the original object, the any, and the result of the

force are identical,

Images can serve as a convenient way to store values on secondary storage. By
making images storable, the same encoding and decoding operations can serve both for
storage and transmission. Furthermore, the representation in storage of a value is
independent of the concrete representation used by the creating guardian. A guardian
may store an image constructed from a T object in secondary storage, change the
concrete representation used by its T cluster, and still be able to retrieve the stored

value (as long as T's external representation remains unchanged).

The most convenient way to encrypt values kept in secondary storage may be to
provide the image type with encrypting operations, rather than providing each storable

type with its own encrypting operation.

Images also provide a way to copy transmissible objects. An object may be
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copied by encodiné its value in an image, and then decoding the image. The result will

be a completely disjoint object, having the same value as the original.
5.3 Implications of Own Data

The principal result of extending the communication primitives to a language
including own data is to make the optimizations described in the previous chapter more

difficult.

By distinguishing between modules that may encounter objects represented by

ufo’s, and those that may not, we were able to restrict the execution of careful
prologues. This optimization depends on our ability to guarantee that two conditions

hold:

No indirect references to objects exist while normal modules are
executing (i.e. when a receive is not in progress).

Only careful modules can execute while a receive is in progress.

Since normal and careful modules share own variables, unrestricted use of own
variables may subvert the dichotomy between the two kinds of module versions. For

example, the careful version of a module may store a reference to a ufo in an own

variable, which may later be operated upon by the normal version, violating the first
condition. Another kind of problem arises when a normal module stores a procedure
in an own procedure variable. The careful version of the module may violate the
second condition by invoking that procedure, supplying an indirect reference as an

argument,

We can avoid these problems by brute-force methods, perhaps by traversing own
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variables at the end of a receive, or by requiring that procedure variables always refer
to careful versions of procedures. More refined methods undoubtedly exist, but their

pursuit is best left to individual implementations.
5.4 Operation Extension by Overloading

Value transmission for an object is performed by the rransmit operation of its
type. The method used to provide an abstract type with a transmit operation differs
significantly from the way abstract operations are usually provided in CLU. In this
section we examine the reasons for this difference. In the following section, we suggest
ways in which the method used to implement transmir may be generalized into a

methodology for implementing other operations of abstract type.

Certain operations, such as identical, copy, and transmit, are useful to a wide
variety of types. The language provides these operations for a collection of built-in

types, and it is frequently useful to provide them for abstract types. We will identify

three approaches to providing such operations. The first approach, which we call the
automatic approach, is to have the language implementation provide the operation for k

the abstract type, usually in terms of the operations of the concrete representation type.

.74' M " -
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The identical operation was defined in this way. In general, this approach is
unsatisfactory, since the exact meaning of a type's operations (¢.g., copy) depend on the

PR abstraction, not on the type’s implementation.

| The second approach, which we shall call the overloading approach, is the one
currently used in CLU. The language provides the built-in types with a collection of
standard operations; the cluster implementing an abstract type may include procedures

to implement the corresponding operations. The language requires that these
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operations have standard interface specifications; for example, T$copy should have the

form:

copy: proctype(T) returns(T)
CLU suggests guidelines for appropriately defining T$copy, although the language
does not attempt to impose further restrictions either on the meaning or on the

implementation of the operation.

In Chapter One, we observed that an abstract type's transmit operation cannot be
provided automatically. One of the main conclusions of this thesis is that it is equally
undesirable to provide abstract transmit operations by overloading. We claim that if
users are given complete freedom to implement transmit, then the problems of sharing
preservation and representation standardization remain unsolved, in any practical

sense.

Let us briefly examine the problems that arise in an alternate scheme using
overloading to provide abstract transmit operations. The image stream scheme used in
the CLU reference manual to store values on secondary storage is used to construct
messages. Image streams behave like the message streams used earlier in this thesis.
All of the built-in types are given encoding operations to insert a value into an image
stream, and decoding operations to extract a value from an image stream.
Implementors of abstract types are expected to provide their types with encoding and
decoding operations, constructed from the encoding and decoding operations of

subsidiary types.

The first problem with the overloading scheme is that it is much more difficult to

verify that information is being transmitted in the correct format. In any scheme,
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communicating implementions of the same type must agree on an intermediate
representation for values of the type. Using image streams, the compiler cannot check
whethgr an encoding operation that may invoke a number of subsidiary encoding
operations produces a correctly typed intermediate representation. On the other hand,
the transmit operation permits static verification that the correct external
representation type is used by a cluster, simply by type-checking the encode and decode
operations. Of course, neither scheme can completely eliminate the possibility of

error; however, the rransmit scheme offers greater protection.

The second problem with the overloading scheme is the difficulty of preserving
sharing. The encoding and decoding operations of the objects being sent must collect
sharing information and encode it explicitly into the stream. One might think that the
task could be facilitated by providing the programmer with access to encoding and
decoding maps. In fact, we have considered many such schemes. Unfortunately, we
have been unable to develop a scheme that did not seem excessively complicated and

awkward.

Transmit is only one of a class of operations that are difficult to extend using
overloading. We suggest copy as an example of another such operation. In CLU, the

copy operation is intended to have the following effect:

the copy operation should provide a "copy” of its input object,
such that subscquent changes made to either the old or the new
object do not affect the other. [Liskov 79, p.80]

Let us examine an abstract type whose copy operation does not readily lend itself to

extension by operator overloading.

Consider a file system organized as a directed graph, where non-terminal nodes

e ————— o A ...
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are directories, and terminal nodes are files. A file is named by specifying a path from

a distinguished root directory to the desired terminal node. Files and directories may

be shared, since a given node may be accessible through one or more paths.

Consider the problem of defining and implementing a directory$copy operation
that is to be used to create backup versions of directories. Given a directory, we wish
to make a copy of the directed graph rooted at that directory. We use A’ to denote the
results of copying a graph node A. We wish copy to preserve the sharing structure of
this subgraph: i.c., if A, B, and C are nodes in the subgraph, and if B and C share a
node A, then B’ and C” should share A",

These specifications cannot be implemented in a satisfactory manner using
operator overloading. The problem is essentially that the user is given no way to detect
non-local sharing structures. The directory$copy operation could conceivably be able
to detect when a single directory has two links to the same file, but there is no
straightforward way to detect that two distinct directories share a file. Furthermore, it
is difficult to prevent the copy operation from recursing forever when it is applied to a

subgraph containing cycles.

5.5 Operation Extension by Template

) The third approach to operator extension, which we call the template approach, was
used to provide abstract transmit operations. Using this approach, an opecration
provided for built-in types may be extended to abstract types, but the language

imposes a rigid structure on the form of the opcration’s implcmentation.

For an abstract type T, we can informally describe the T$/ransmit operation in 1

- - < - oean TRk T
" j

terms of the following five steps:
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Step 1: Check for sharing.

Step 2: Encode the T value into its external representation.
Step 3: Transmit the external representation.

Step 4: Check for sharing.

Step S: Decode the external representation into a T object.

Steps One and Two are performed at the sending guardian, while steps Four and Five
are performed at the receiving guardian. The language controls the form of transmit,
while the user controls its meaning through the provision of the encode and decode

operations used in steps Two and Five.

In the remainder of this section, we will examine how this approach can be
generalized to extend an arbitrary operation, and we will review a number of
operations whose implementations are better effected by using templates than by using

overloading.

We assume that some collection of built-in types and type constructors is
provided with an op operation. For each such type S, S$op has the following interface

specification:

op: proctype(AT,,...,AT,) returns(RT,,....,RT,) signals(...)

where each argument type and each result type (both normal and exceptional) is either

a built-in type, or S. We use [ to denote the set of indices i such that AT, = S, and J to

denote the set of indices j such that R'T‘j =8S.

AP To extend the op operation to an abstract type T, the T cluster must provide
translation operations, denoted here by T$op_encode and T$op_decode. The op_encode
operation encodes the value of an argument of type T into a value of a special

representation type ST, where ST has an op operation. The op_decode operation
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accepts an argument of type ST, and returns a result of type T.

op_encode: proctype(T) returns(ST)
_ signals(encode_error(string))

op_decode: proctype(ST) returns(T7)
signals({decode_error(string))

T$op is defined in terms of ST$0p in the following way. An invocation such as

Y1o--+o¥m = TS0P(x].....xy)

causes the invocation of:

¥1'seoe0¥m' = STSop(x)".....xg")

where the values of the arguments to ST$op are defined by:

X' = T$op_encode(xi) fori €L

x;' = x; otherwise.
The translation between the arguments to T$op and the arguments to ST$op is also
sensitive to sharing, in the following way. All invocations of op take place with respect
to a given context, where a context is analogous to the message context defined in
Chapter Two. The scope of a context is defined as follows. When T$op is invoked
directly from a user program, a new context is created. When an invocation of T$op
causes the invocation of ST$op, the latter occurs with respect to the same context as the
former. For all invocations of T$op occurring with respect to the same context, the
following condition holds: if two arguments to T$op share a T object A, then the
corresponding arguments to ST$op will sharc a ST object A’, where A’ is constructed

from A by a single application of T$op_encode.

If ST$op returns normally, then T$op returns normally, and the values of its

results are defined by:
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y; = T$op_decode(yj') forjel.

y; = yj' otherwise.
Sharing among the results is preserved in the same way as sharing among the
arguments: for all invocations of STsop occurring with respect to the same context, if
two results of ST$op share a ST object B°, then the corresponding results of T$op will
share a T object B, where B is constructed from B’ by a single application of

TS$op_decode.

If ST$op raises an exception, then T$op raises the same exception, and any
objects returned by the exceptions are treated as results; i.e., if ST$op's exception
returns a ST object, then T$op's exception returns a T object constructed from the
corresponding ST object by an application of T$op_decode. Finally, if op_encode or

op_decode signal an exception, then T$op signals that same exception.

Templates are useful for defining operations that are sensitive to sharing
structure. Since the op_encode and op_decode operations associated with such an
operation are applied by the language implementation, not by user programs, the
language implementation can do the bookkeep.ing required to recognize and keep track
of sharing. As we have repeatedly argued in the case of the transmit operation, this

kind of bookkeeping is tedious and error-prone if performed by the user.

Template definition may be viewed as a control abstraction; the cluster writer
who defines an operation using a template definition necd not be concerned with the
mechanical details of sharing preservation, but the fact that sharing is preserved may
be quite important. The programmer is free to concentrate on the individual

translation operations, while the language implementation ensures that they are

applied correctly.
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5.5.1 Revising Standard CLU Opcrations

The first examples we will examine are standard CLU operations. As illustrated
in a previous section, the problem of sharing preservation makes the copy operation
difficult to extend satisfactorily using overloading. By using a template structured copy
opcration, the language implementation can detect sharing, while the meaning of the

opcration can be controlled by user-defined copy_encode and copy_decode operations.

For some types, copy will just copy the underlying concrete represcntation object.
In that case, copy..encode and copy_decode may just perform up and down conversions.
As an example of a type requiring more sophisticated translation operations, consider a
PT (protected T) object consisting of a T object protected by an associated semaphore.
When the PT object is copied, it would make no sense to copy the state of the
semaphore, which may contain a collection of v-aiting processes. The PT$copy_encode
operation returns the T component without the associated semaphore, while the
copy..decode operation accepts a T object, creates a new semaphore, and then combines

them to construct a PT object.

CLU’s similar operation is used to determine when two objects of the same type
have the same information content. Precisely what constitutes the interesting
“information content” of an object is quite type-dependent. For instance,
array[T)$similar is defined to check whether the two arrays being compared have the
same bounds. If so, then TSsimilar is used to test pairs of corresponding elements for

similarity. Ifall of these tests succeed, then the two arrays are deemed to be similar.

The definition of array[T]$similar could be altered to encompass the sharing

structures of the arrays being compared. Two objects may be compared as directed
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graphs of objects, where nodes represent component objects, and edges represent
logical containment. Let us define a globally_similar operation for the built-in types to
test for similar objects having the same structure as directed graphs. Individual node

similarity is tested in the usual manner.

globally_similar: proctype(T, T) returns(bool)

Global sharing structure is recognized by accumulating a table of corresponding
components of the objects being compared. If at any time, a component of one object
corresponds to more than one component of the other, then the objects are not

globally_similar.

We observe that since globally_similar returns no objects of T type, there is no

need for a decoding translation operation.

When comparing the values of objects of the protected T type introduced above,
let us assume we only wish to compare the values of the T components; we do not wish
to compare the states of the associated semaphores. Under this assumption, the
encoding translation operation only needs to extract and return the T component of its

PT argument.
5.5.2 170 Operations

We have observed that template definition imposes a rigid structure on the form
of an operation’s implementation. A benefit of this rigidity is that it becomes possible
to use template structured operations to define interfaces between autonomous

domains such as guardians. We have alrcady seen how the structure of the transmit

operation permits a division of labor between the communicating guardians, and
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between the language implementation and the cluster writer. A large class of
operations that not only involve sharing detection, but that require a degree of
standardization among autonomous guardians, are operations to perform input or

output activities using the values of abstract objects.

The first [/0 operations we will examine are used to store and retrieve the values
of objects on secondary storage. Let us define srore and retrieve operations for the

built-in types, having the following interface specifications:

store: proc(T) returns(file_name)
retrieve: proc(file_name) returns(T)

Mechanically copying objects’ concrete representations to secondary storage is not a
satisfactory way to implement store and retrieve. To illustrate this point, we recall the
protected T type. When storing the value of a protected T object, it makes little sense
to store the state of the associated semaphore. Similarly, overloading is not a
satisfactory way to implement store and retrieve, for two reasons. First, we would like
to control how sharing structure is prescrved. Second, we would like to use static
type-checking to ensure that values of a type are stored in a standard format, since we
would like to share stored values with other guardians that might use different concrete

representations for the type.

We may extend siore and retrieve to abstract types by selecting for each abstract
type T, a stable representation type ST, with appropriate translation operations. We
recall that by using a standard external representation, T values could be
communicated between different implementations of T. Similarly, the use of a

standard stable represcntation permits different implementations of T to store and

retrieve one another’s values. This may be particularly useful when replacing one
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version of the T cluster by another; by leaving the stable representation unchanged, the

new version can read values previously stored by old versions.

Another operation that should be sensitive to sharing structure is the display
operation to display values of objects to humans. Display requires an encoding
translation operation, but no decoding translation operation. The display operation is
particularly uscfu! for debugging. When debugging a program that uses a data
abstraction T, the best way to display a T object’s value is not necessarily to display the
value of its representation. For instance, when debugging a program that uses a
symbol table, a simple display of associated key-item pairs will be more uscful than a
more complicated display of hash tables and list structures. This kind of display is
particularly appropriate for remote debugging, where an object of interest resides on a
foreign guardian using a concrete representation unknown to the debugger. On the
other hand, when debugging the symbol table cluster, the value of the representation is

of interest.

We do not intend to explore the difficult question of how values are to be
represented to users; however, one could imagine displaying an object’s value as a
directed graph on a high resolution cathode-ray screen. The built-in types and type
constructors may be given a standard display representation, which may be extended to
abstract types by selecting for each abstract type T, a display representation type DT,
with a translation operation from T to DT. The inverse translation from DT to T might
be used to define T literals.
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553 Conclusions

Operation extension by template definition appears to have two advantages. It
serves to implement sharing-sensitive operations for abstract types in a way that is not

currently possible in CLU. Furthermore, template definition eases the standardization

1
problems that arise in a distributed system; although we cannot guarantee that the 4'
information being released by 1ransmit, store, or display is correct, we can guarantee
that it is in the correct format. %'

When defining template operations that operate on cyclic objects, one encounters
the same problems we encountered earlier with self-referential external
representations. If we make the same choice we made for transmit, we may operate on
arbitrary cyclic objects by imposing restrictions on op_decode operations. The language
implementation must then introduce uninitialized object versions in the manner

described above.

On the negative side, there may be an efficiency penalty to having the language
implementation apply translation operations and check for sharing. A programmer

4 having semantic information about an abstraction can detect optimizations that the

language implementation cannot. By expending more human effort, in is undoubtedly

possible to improve individual implementations. There is a characteristic trade-off
between the increased convenience and reliability provided by template-structured
operations, and the ability to construct optimizations on an individual basis provided

by overloaded operations.

- ————— <
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5.6 Applicability to Other Languages

Since we have presented our communication primitives as an extension to CLU,

it is natural to ask how readily our primitives can be adapted to other languages.

One aspect of CLU that is essential to our scheme is the notion of data
abstraction. One of the principal motivations is the belief that different representations
of information are appropriate for different purposes. The representation used to
transmit a value between guardians may be different from the representation used
within a particular guardian, and differcnt representations for objects of a type may
used at different guardians. If the language contains no facilities for encapsulating
representation information, then communication among differing implementations

must be based on voluntary conventions, not on language features.

The fact that CLU is an object-oriented language, as opposed to a
variable-oriented language, is not crucial to our scheme. Although we have spent
much of our effort defining the effects of transmission on sharing structure, the same
problems arise in languages having explicit reference types, and the same solutions are

applicable.

5.7 Directions for Further Research

Defining value transmission is only the first of many difficult problems in the
development of communication primitives for a distributed application language. A
comprehensive survey of the outstanding research areas in this field could easily fill
another chapter; accordingly, we mention only those questions that arise directly from

this research.
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Rather than limit messages to the value of a single object, it may be convenient to
introduce explicit message types. One possibility is to define a message type as
consisting of a tag followed by objects whose values are transmitted together. Port

types would consist of a list of message types. Examples of message types are:

employee(name: string. salary: iat)
error{message: string)

If two objects whose values are sent in a message share a component, it must be
decided whether the objects constructed by the receiver should also share. If that
effect is desired, all the objects in a message should be encoded and decoded in the
same message context. Alternatively, if the opposite effect is desired, a distinct

message context should be used for each object.

An alternative to explicit message passing is to support inter-guardian
communication by remote procedure invocation, The value transmission mechanisms
developed here can be used to pass arguments from the invoking guardian to the
KE guardian where the requested action is carried out, and to return any resuits. This kind
of remote invocation differs from usual procedure invocation in CLU, where
procedures pass arguments by sharing objects between the caller and the called

procedures. Remote argument passing resembles traditional call-by-value schemes.

R
L ¢ We feel that value transmission is better suited to remote invocation, as node failures
2:; f and inherent unreliability in the communication medium can cause remote invocations
- . 31 to fail in ways that are not possible for local invocations.

> In summary, the valuc transmission scheme developed here can be adapted to a
5 %! number of different communication primitives. Determining the best scheme (or
3 schemes) to incorporate into a language is an area that would benefit from further
G é
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research.

The send and receive statements used in this thesis were defined as simply as
possible. Such simple send and receive statements are probably not the best choice of
primitives. Actual language primitives would probably have to be more sophisticated,
and would certainly have to address issues that we have avoided. For example, it may
be useful to provide primitives to support patterns of communication, éuch as remote
procedure invocation, paired requests and responses, or forwarding of requests to other
guardians. More research is needed to determine which of these patterns, if any,

should be supported in a higher-level language.

We have made no mention of the degree of reliability provided by the send and
receive primitives. The send primitive may or may not attempt to retransmit messages
that appear to have been lost, and it may or may not cause the same message to be
received more than once. The degree of reliability built into a primitive undoubtedly
depends on its form; a remote invocation primitive would have to be fairly reliable,
while a simple send need not be. The inherent unrcliability of a distributed system
may complicate the programmer’s task; the degree to which the proper choice of
communication primitives may ease such problems is an important area for future

research.

We have used ports to indicate the destination of messages, and to insure type
correctness. We have not addressed how ports are acquired, or whether ports are really
the best way for guardians to name one another. The question of inter-guardian
naming decpends on assumptions about the organizations of programs, and the

organizations of guardians.
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We have not given a formal semantics for value transmission. A number of
approaches to formal description of object-oriented languages exist [Berzins 79,
Schaffert 78, Scheifler 78]; it would be interesting to extend these descriptions to value

transmission.

The scheme developed in this thesis permits guardians to change the concrete
representation used for a type without that change being visible outside the guardian.
We have not provided any easy way to change the external representation used by an
abstraction, as such a change requires changing implementations at all guardians
supporting the type. Changing a type's external representation is a special case of the

general problem of replacing programs in a distributed system.

Finally, we have noted that the template scheme used to implement and define
transmit can be extended in a very straightforward manner to implement and define
such operations as copy, similar, store and retrieve, and display. It is natural to enquire
whether other opcrations may be defined in this way, and whether other kinds of

templates may be useful for defining other operations.

1
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